УДК 621.923 РАСЧЕТ ТЕМПЕРАТУРЫ ШЛИФОВАНИЯ С УЧЕТОМ ДВИЖЕНИЯ ТЕПЛОВОГО ИСТОЧНИКА ВГЛУБЬ ПОВЕРХНОСТНОГО СЛОЯ ОБРАБАТЫВАЕМОЙ ДЕТАЛИ

Новиков Ф.В., докт. техн. наук, Яценко С.М. (г. Харьков, Украина)

Предложен расчет температуры шлифования с учетом движения теплового источника вглубь поверхностного слоя обрабатываемой детали

Основываясь на известных подходах к расчету температуры шлифования, предложенных проф. Якимовым А.В. [1] и в наших работах [2, 3], в настоящей статье приведено новое решение задачи определения температуры шлифования с учетом движения теплового источника вглубь поверхностного слоя обрабатываемой детали. Иными словами, получено уточненное аналитическое решение с учетом перерезания адиабатических стержней, которыми условно представлен обрабатываемый материал, рис. 1. Будем считать, что в процессе шлифования часть стержня, равная величине снимаемого припуска (или в первом приближении — равная глубине шлифования t) перерезается шлифовальным кругом, рис. 1.

Рис. 1. Расчетная схема шлифования с учетом перерезания адиабатического стержня: 1 – круг; 2 – адиабатический стержень.

Предположим, что за время действия теплового источника τ произошло перерезание стержня длиной l_1 , т.е. тепловой источник переместился вдоль стержня на величину $l_1 = V_{pe3} \cdot \tau$, и за это время в результате резания выделено количество тепла Q (где V_{pe3} - скорость перерезания стержня, м/с). Это тепло,

во-первых, ушло на нагревание стержня длиной l_1 (затрачено количество тепла Q_1), во-вторых, на нагревание стержня длиной l_2 за счет теплопроводности обрабатываемого материала (затрачено количество тепла Q_2), рис. 1:

$$Q = Q_1 + Q_2. \tag{1}$$

Количество тепла Q_1 можно математически выразить следующим образом. Разобьем стержень длиной l_1 на бесконечное множество элементарных участков длиной Δl (рис. 1). Предположим, что каждый из них нагрелся до разной температуры: первый – до температуры θ_1 , второй – до температуры θ_2 и т.д. Тогда количество тепла, затраченное на нагрев первого участка стержня длиной, будет равно:

$$Q_{11} = c \cdot m_1 \cdot \theta_1, \qquad (2)$$

где c – коэффициент теплопроводности обрабатываемого материала, Дж/(кг·К); $m_1 = \rho \cdot V_1 = \rho \cdot S \cdot \Delta l$ – масса первого участка стержня длиной Δl , кг; ρ – плотность обрабатываемого материала, кг/м³; V_1 – объем первого участка стержня длиной Δl , м³; S – площадь поперечного сечения стержня, м².

После преобразования зависимость (2) примет вид:

$$Q_{11} = c \cdot \rho \cdot S \cdot \Delta l \cdot \theta_1 . \tag{3}$$

Аналогичным образом определяются значения количества тепла Q_{12} и Q_{1n} , затрачиваемые на нагрев второго и *n*-ного участков стержня:

$$Q_{12} = c \cdot \rho \cdot S \cdot \Delta l \cdot \theta_2 , \qquad (4)$$

$$Q_{1n} = c \cdot \rho \cdot S \cdot \Delta l \cdot \theta_n . \tag{5}$$

Суммарное количество тепла, затрачиваемое на нагрев всего стержня длиной, определится:

$$Q_1 = Q_{11} + Q_{12} + \dots + Q_{1n} = \sum_{i}^{n} Q_{1i} .$$
(6)

С учетом зависимостей (3), (4) и (5), зависимость (6) выразится:

$$Q_1 = c \cdot \rho \cdot S \cdot \sum_{i}^{n} \theta_i \cdot \Delta l \quad , \tag{7}$$

где θ_i – температура нагрева *i* -того (текущего) участка стержня длиной l_1 .

В зависимости (7) сумму слагаемых можно представить в виде интеграла:

$$Q_1 = c \cdot \rho \cdot S \cdot \int_0^\tau \theta \cdot dl \quad , \tag{8}$$

где θ – функция температуры нагрева стержня длиной l_1 от времени; $dl = \Delta l = V_{pe3} \cdot d\tau$; V_{pe3} – скорость перерезания стержня, м/с; $d\tau$ – время, за которое происходит перерезание стержня длиной dl.

После преобразований зависимость (8) примет вид:

$$Q_1 = c \cdot \rho \cdot S \cdot V_{pe3} \cdot \int_0^\tau \theta \cdot d\tau \quad . \tag{9}$$

Определим теперь количество тепла Q_2 , затрачиваемое на нагрев стержня длиной l_2 (рис. 1). Для этого воспользуемся известной из курса физики зависимостью для определения количества тепла, протекшего через стержень длиной l_2 в результате его теплопроводности:

$$Q_2 = \lambda \cdot S \cdot \frac{\theta_{2Hay} - \theta_{2\kappa oH}}{l_2} \cdot \tau_2, \qquad (10)$$

где λ – коэффициент теплопроводности обрабатываемого материала, Вт/м·К; $\theta_{2_{Hay}} = \theta_2$ – температура на торце оставшегося после перерезания части стержня длиной l_2 ; $\theta_{2_{KOH}} = 0$ – температура на конце стержня длиной l_2 (равна нулю); τ_2 – время нагрева стержня длиной l_2 .

Здесь неизвестными являются параметры $\theta_{2_{Hay}} = \theta_2$, l_2 и τ_2 .

Будем считать, что количество тепла, затрачиваемое на нагрев стержня длиной l_2

$$Q_2 = c \cdot m \cdot \theta_2 \cdot 0,5 \tag{11}$$

равно количеству тепла, определяемому зависимостью (10), протекшего через стержень длиной l_2 в результате его теплопроводности.

В зависимости (11) приняты следующие обозначения: m – масса стержня длиной l_2 , кг; ρ – плотность обрабатываемого материала, кг/м³; V_2 – объем стержня длиной l_2 , м³; S – площадь поперечного сечения стержня, м². Введенный в зависимость (11) коэффициент 0,5 определяет среднюю температуру нагрева стержня длиной l_2 .

После преобразований зависимость (11) примет вид:

$$Q_2 = 0, 5 \cdot c \cdot \rho \cdot S \cdot l_2 \cdot \theta_2 \quad . \tag{12}$$

Выразим длину стержня l_2 с помощью зависимости (10). Для этого примем в зависимости (10): $Q_2 = N \cdot \tau_2$; $\theta_{2hay} - \theta_{2\kappa o h} = \theta_2$, где N – мощность теплового источника.

Разрешая зависимость (10) относительно длины l_2 , имеем:

$$l_2 = \frac{\lambda \cdot S \cdot \theta_2}{N} \ . \tag{13}$$

Подставим зависимость (13) в зависимость (12):

$$Q_2 = 0, 5 \cdot c \cdot \rho \cdot \lambda \cdot S^2 \cdot \frac{\theta_2^2}{N} . \tag{14}$$

Таким образом, определено количество тепла θ_2 , затрачиваемое на нагревание стержня длиной l_2 . Подставляя полученные зависимости (9) и (14) в зависимость (1), определим общее количество тепла, которое ушло на нагревание двух частей стержня длиной $(l_1 + l_2)$:

$$Q = c \cdot \rho \cdot S \cdot V_{pe3} \cdot \int_{0}^{\tau} \theta \cdot d\tau + 0, 5 \cdot c \cdot \rho \cdot \lambda \cdot S^{2} \cdot \frac{\theta_{2}^{2}}{N}.$$
 (15)

В свою очередь общее количество тепла *Q* можно представить:

$$Q = N \cdot \tau \,, \tag{16}$$

где N — мощность теплового источника; τ — время перерезания стержня длиной l_1 , равное времени действия теплового источника.

Подставим зависимость (16) в зависимость (15):

$$c \cdot \rho \cdot S \cdot V_{pe3} \cdot \int_{0}^{\tau} \theta \cdot d\tau + 0.5 \cdot c \cdot \rho \cdot \lambda \cdot S^{2} \cdot \frac{\theta_{2}^{2}}{N} = N \cdot \tau \quad .$$
(17)

В результате пришли к интегральному уравнению, в котором неизвестной величиной является температура, зависящая от времени *т*.

Для упрощения решения уравнения (17) продифференцируем температуру по времени τ , т.е. продифференцируем все слагаемые уравнения (17) с учетом $\theta(\tau) = \theta_2$:

$$c \cdot \rho \cdot S \cdot V_{pe_3} \cdot \theta(\tau) + c \cdot \rho \cdot \lambda \cdot S^2 \cdot \frac{\theta_2 \cdot \theta_2'}{N} = N , \qquad (18)$$

где θ'_2 – первая производная функции θ_2 по времени τ ; $\theta(\tau)$ – температура на последнем элементарном участке стержня длиной l_1 .

В результате пришли к дифференциальному уравнению первого порядка с учетом $\theta_2 = \theta$:

$$\theta' \cdot \theta + A \cdot \theta = B, \qquad (19)$$

где $A = \frac{V_{pes} \cdot N}{\lambda \cdot S}$; $B = \frac{N^2}{c \cdot \rho \cdot \lambda \cdot S^2}$; $\frac{N}{S} = q$ - плотность теплового потока, BT/м².

Плотность теплового потока q можно выразить аналитически с помощью соотношений, приведенных в работе [2]:

$$q = \frac{N}{S} = \frac{P_z \cdot V_{\kappa p}}{S} = \frac{\sigma \cdot S_{\mathcal{M}\mathcal{P}\mathcal{H}} \cdot V_{\kappa p}}{S} = \frac{\sigma \cdot V_{\kappa p}}{S} \cdot \frac{Q_{np}}{V_{\kappa p}} = \frac{\sigma \cdot S \cdot V_{pe3}}{S} = \sigma \cdot V_{pe3},$$

где $P_z = \sigma \cdot S_{_{M2H}}$ – тангенциальная составляющая силы резания, H; σ – условное напряжение резания при шлифовании, H/м²; $S_{_{M2H}} = Q_{np} / V_{_{Kp}}$ – мгновенная суммарная площадь поперечного сечения среза всеми одновременно работающими зернами шлифовального круга, м²; $Q_{np} = S \cdot V_{pe3}$ – производительность обработки (стержня), м³/с; $V_{_{Kp}}$ – скорость круга, м/с; S – площадь поперечного сечения стержня, м²; V_{pe3} – скорость перерезания стержня, м/с.

Температура θ в уравнении (19) является функцией времени τ . Решение дифференциального уравнения (19) с учетом начального условия $\theta(\tau = 0) = 0$ имеет вид:

$$\theta = \frac{B}{A} \cdot \left[1 - e^{-\frac{A^2}{B} \cdot \left(\tau + \frac{\theta}{A}\right)} \right] = \frac{\sigma}{c \cdot \rho} \cdot \left[1 - e^{-\frac{c \cdot \rho \cdot V_{pe3}}{\lambda} \cdot l_1} \cdot e^{-\frac{c \cdot \rho}{\sigma} \cdot \theta} \right].$$
(20)
$$-\frac{c \cdot \rho}{b} \cdot \theta$$

Наличие в зависимости (20) множителя e^{σ} усиливает рост температуры θ с увеличением времени τ (соответственно длины перерезанной части стержня l_1). Общий вид зависимости θ от τ (и l_1) показан на рис. 2. С увеличением времени τ температура θ непрерывно увеличивается, асимптотически приближаясь к значению $\frac{\sigma}{c \cdot \rho}$.

Рис. 2. Зависимость температуры θ от времени τ и длины l_1 .

Учитывая сложный характер взаимосвязи температуры θ с временем τ , введем новый параметр – относительную величину температуры $z = \frac{\theta}{\left(\frac{\sigma}{c \cdot \rho}\right)}$ и

проведем анализ его изменения. Данный параметр определяется отношением текущего значения температуры θ к максимальному значению температуры $\frac{\sigma}{c \cdot \rho}$. Для этого выразим в зависимости (20) температуру θ через безразмерную величину *z*:

$$l_1 = -\frac{\lambda}{c \cdot \rho \cdot V_{pe3}} \cdot \left[ln(1-z) + z \right] = \frac{\lambda}{c \cdot \rho \cdot V_{pe3}} \cdot \bar{l}_1, \qquad (21)$$

где $\bar{l}_1 = -ln(1-z) - z$.

В результате пришли к довольно простой зависимости для определения длины перерезанной части стержня l_1 . В табл. 1 и на рис. 3 приведены расчетные значения \bar{l}_1 в зависимости от относительной величины температуры z.

Таблица 1

Z	0,091	0,167	0,333	0,5	0,632	0,85	0,9	0,99	0,999	0,9999
$\bar{l_1}$	0,004	0,015	0,072	0,193	0,368	1,047	1,4	2,005	3,6	6,0

Рис. 3. Характер изменения безразмерных величин $\bar{l}_1(1)$ и $\bar{l}_2(2)$ в зависимости от относительной величины температуры z.

Как видим, чем больше безразмерная величина \bar{l}_1 , тем больше относительная величина температуры z, которая асимптотически приближается к единице. По такому же закону будет изменяться относительная величина z в зависимости от времени τ :

$$\tau = \frac{l_1}{V_{pe3}} = -\frac{\lambda}{c \cdot \rho \cdot V_{pe3}^2} \cdot \left[ln(1-z) + z \right] = \frac{\lambda}{c \cdot \rho \cdot V_{pe3}^2} \cdot \bar{l}_1.$$
(22)

Установим теперь характер изменения длины стержня l_2 , определяемой зависимостью (13), учитывая принятое ранее обозначение $\theta_2 = \theta$, мощность теплового источника N в виде $N = \sigma \cdot S \cdot V_{pe3}$ и z:

$$l_2 = \frac{\lambda \cdot z}{c \cdot \rho \cdot V_{pe3}} = \frac{\lambda}{c \cdot \rho \cdot V_{pe3}} \cdot \bar{l}_2 , \qquad (23)$$

где $\bar{l}_2 = z$.

Зависимости (21) и (23) отличаются лишь вторым безразмерным множителем. На рис. 3 показан характер изменения безразмерных величин \bar{l}_1 и \bar{l}_2 в зависимости от относительной величины температуры z, изменяющейся в пределах 0...1. Как видно, с увеличением z безразмерная величина \bar{l}_1 непрерывно увеличивается, стремясь асимптотически к бесконечности при значении $z \rightarrow 1$. Безразмерная величина \bar{l}_2 увеличивается по линейному закону с увеличением z в пределах z=0...1. При $z \ge 1$ функция \bar{l}_2 не существует.

На рис. 4,а представлен преобразованный график (рис. 3) относительной величины температуры z от безразмерной величины $\overline{l_1}$. Как видно, с

увеличением l_1 относительная величина температуры Zнепрерывно увеличивается, асимптотически приближаясь к единице. На этом же рисунке показан характер изменения относительной величины температуры *z* на участках рассматриваемого адиабатического стержня с длинами l_1 и l_2 . На участке стержня длиной l_1 , соответствующей безразмерной величине \bar{l}_1 , нелинейно (по температуры Zизменяется относительная величина экспоненциальному закону), а на участке длиной l₂, соответствующей безразмерной величине \bar{l}_2 , – линейно. При этом безразмерная величина \bar{l}_2 равна ординате графика z, т.е. показанный на рис. 4,а угол α равен 45⁰.

Рис. 4. Зависимость относительной величины температуры *z* от безразмерной величины *l*₁.

На рис. 4,б показан характер изменения относительной величины температуры z на двух участках рассматриваемого стержня для различных значений \bar{l}_1 (различных значений длительности действия теплового источника τ). Как видно, с увеличением \bar{l}_1 увеличивается пропорционально безразмерная величина \bar{l}_2 и относительная величина температуры z. Угол α , показанный на рис. 4,6, всегда остается постоянным, равным 45°. При $z \rightarrow 1$ безразмерная величина \bar{l}_2 практически стабилизируется и не зависит от длины перемещения теплового источника τ .

Для наглядности в табл. 2 приведены расчетные значения безразмерных величин \bar{l}_1 и \bar{l}_2 в зависимости от величины z.

Таблица 2

					1	-		1	2	
Z	0,091	0,167	0,333	0,5	0,632	0,85	0,9	0,99	0,999	0,9999
\bar{l}_1	0,004	0,015	0,072	0,193	0,368	1,047	1,4	2,005	3,6	6,0
\bar{l}_2	0,091	0,167	0,333	0,5	0,632	0,85	0,9	0,99	0,999	0,9999

Расчетные значения безразмерных величин \bar{l}_1 и \bar{l}_2

Из табл. 2 следует, что при z < 0,8 справедливо неравенство $\bar{l}_2 > \bar{l}_1$, а при z > 0,8 – наоборот, $\bar{l}_2 < \bar{l}_1$. Причем, начиная с z=0,8 безразмерная величина \bar{l}_2 остается практически постоянной с изменением z, а безразмерная величина \bar{l}_1 – непрерывно увеличивается. Из этого следует, что при $z \rightarrow 1$ происходит стабилизация во времени безразмерной величины \bar{l}_2 и соответственно температуры θ . С учетом сказанного параметр l_2 для условия стабилизации теплового процесса определяется:

$$l_2 = \frac{\lambda}{c \cdot \rho \cdot V_{pe3}}.$$
(24)

Соответственно время τ выразится:

$$\tau = \frac{\lambda}{c \cdot \rho \cdot V_{pe3}^2}.$$
(25)

Расчет температуры θ можно производить по зависимости:

$$\theta = \frac{\sigma}{c \cdot \rho} \cdot z , \qquad (26)$$

используя расчетные значения z, приведенные в табл. 2, с учетом значений $l_1 = V_{pes} \cdot \tau$, т.е. в зависимости от длины l_1 или времени τ .

Таким образом, в работе предложена новая методика расчета температуры поверхностного слоя обрабатываемой детали θ с учетом перерезания адиабатических стержней, которыми условно представлен обрабатываемый материал, т.е. с учетом движения теплового источника вглубь поверхностного слоя обрабатываемой детали.

Литература: 1. Якимов А.В. Оптимизация процесса шлифования. – М.: Машиностроение, 1975. – 175 с. 2. Физико-математическая теория процессов обработки материалов и технологии машиностроения / Под общ. ред. Ф.В. Новикова и А.В. Якимова. В десяти томах. – Т. 4. "Теория абразивной и алмазно-абразивной обработки материалов " – Одесса: ОНПУ, 2002. – 802 с. 3. Физико-математическая теория процессов обработки материалов и технологии машиностроения / Под общей редакцией Ф.В. Новикова и А.В. Якимова. В десяти томах. В десяти томах. – Т.10. "Концепция развития технологии машиностроения " – Одесса: ОНПУ, 2005. – 565 с.