ПОВЫШЕНИЕ КАЧЕСТВА ОБРАБОТКИ ПРИ АЛМАЗНОМ ШЛИФОВАНИИ КОМПОЗИЦИИ «ТВЕРДЫЙ СПЛАВ «РЕЛИТ» - НЕРЖАВЕЮЩАЯ СТАЛЬ»

Новиков Ф.В., докт. техн. наук, Ткаченко В.П.

(Харьковский государственный экономический университет, OAO завод «Потенциал», г. Харьков)

В работе решается задача исключения образования заусенцев при алмазном шлифовании торцовой поверхности кольца композиции «твёрдый сплав «Релит» — нержавеющая сталь». Приведены теоретические и экспериментальные результаты исследований.

Важной проблемой при шлифовании рабочих поверхностей торцовых уплотнений, выполненных в виде кольца из композиции «твёрдый сплав «Релит» — нержавеющая сталь», является уменьшение величины образующихся заусенцев.

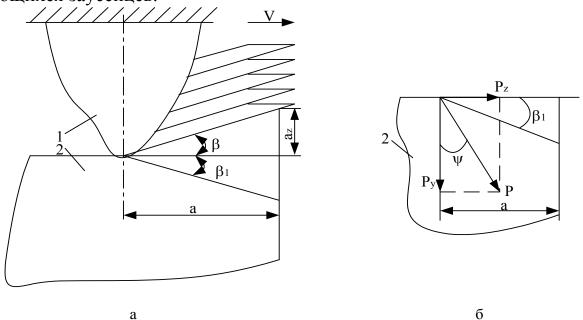


Рис. 1 Расчётная схема: 1 - режущее зерно, 2 - обрабатываемый материал.

Экспериментально установлено, что при шлифовании торцом алмазного круга 12A2 45° 150x10x3x32 AC6 100/80 4 на органической связке B2-01 толщина заусенцев меньше, чем при шлифовании алмазным кругом на металлической связке M1-01. Причём применение эффективной электроэрозионной правки алмазного круга на металлической связке не позволяет существенно уменьшить толщину заусенцев.

Для того чтобы выяснить причину образования заусенцев, рассмотрим следующую расчётную схему микрорезания единичным зерном, рис. 1.

Под действием силы резания P возможен сдвиг материала вдоль условной плоскости, расположенной под углом β или β_1 . В первом случае осуществляется процесс стружкообразования и резания. Во втором случае – образование скола (для хрупкого обрабатываемого материала) или пластическое течение (образование заусенец) при обработке пластичного материала. Предположим, зерно находится на удалении a от края обрабатываемой поверхности. Спроецируем силу P на плоскость, расположенную под углом β_1 , и определим касательное напряжение τ :

$$\tau = \frac{P \cdot \cos(90^{\circ} - \psi - \beta_1) \cdot \cos \beta_1}{b \cdot \alpha},\tag{1}$$

где b - ширина единичного среза, м.

Из полученной зависимости следует наличие экстремума (максимума) функции τ от угла β_1 . Используя необходимое условие существования экстремума ($\tau_{\beta_1} = 0$), имеем

$$\beta_1 = 45^{\circ} - \frac{\psi}{2}. \tag{2}$$

Экстремальное значение угла β_1 тем меньше, чем больше угол ψ , т.е. чем больше тангенциальная составляющая силы резания P_z и меньше радиальная составляющая P_y . Подставляя (2) в зависимость (1) с учётом $\tau = \tau_{coe}$ (где τ_{coe} - предел прочности обрабатываемого материала на сдвиг, H/M^2), получим

$$a = \frac{P}{b \cdot \tau_{cos}} \cdot \sin^2 \left(45^\circ + \frac{\psi}{2} \right). \tag{3}$$

$$P = \frac{P_z}{\sin \psi},$$

Силу Р выразим

где $P_z = \sigma \cdot b \cdot a_z$; σ - условное напряжение резания, H/M^2 ;

 a_z - толщина среза. м.

Тогда

$$a = \frac{\sigma \cdot a_z}{\tau_{colo} \cdot \sin \psi} \cdot \sin^2 \left(45^\circ + \frac{\psi}{2} \right). \tag{4}$$

Уменьшить величину a можно уменьшением параметров σ , a_z и увеличением угла ψ .

Рассмотрим условия стружкообразования, т.е. когда сдвиг материала происходит вдоль условной плоскости сдвига, расположенной под углом

 β . Спроецируем силу P на плоскость, расположенную под углом β (рис. 1):

$$\tau = \frac{P \cdot \cos(90^{\circ} - \psi + \beta) \cdot \sin \beta}{b \cdot a_{z}}.$$
 (5)

Функция τ изменяется по экстремальной зависимости с изменением угла β . Для определения экстремального значения β_1 продифференцируем τ по углу β_1 и первую производную приравняем к нулю. В результате имеем

$$\beta = \frac{\psi}{2}.\tag{6}$$

Предельное значение а равно

$$a = \frac{a_z}{tg\beta} = \frac{a_z}{tg\frac{\psi}{2}}. (7)$$

Сравним значения a, определяемые зависимостями (4) и (7), для чего зависимость (4) представим в виде

$$a = \frac{a_z}{tg\frac{\psi}{2}} \cdot \frac{\sigma}{4 \cdot \tau_{cos}} \cdot \left(1 + tg\frac{\psi}{2}\right)^2.$$
 (8)

В работе [1] показано, что параметр σ связан с пределом прочности обрабатываемого материала на сжатие $\sigma_{c,\!\kappa}$ зависимостью

$$\sigma = \frac{\sigma_{coc}}{2 \cdot tg \,\beta} \,. \tag{9}$$

С учётом $\sigma_{_{\mathcal{CM}}} \,\Box\, 2 \cdot au_{_{\mathcal{COG}}}$, подставляя (9) в зависимость (8), получим

$$a = \frac{a_z}{tg\frac{\psi}{2}} \cdot \frac{\left(1 + tg\frac{\psi}{2}\right)^2}{4 \cdot tg\frac{\psi}{2}}.$$
 (10)

Из рис. 1 следует, что

$$tg\psi = \frac{P_z}{P_v} = \kappa_w, \tag{11}$$

где κ_{u} - коэффициент резания при шлифовании.

Преобразуем зависимость (10), принимая приближённо $\sin \psi \Box tg\psi = \kappa_{u}$:

$$a = \frac{a_z}{tg\frac{\psi}{2}} \cdot \frac{1}{2} \cdot \left(1 + \frac{1}{\kappa_u}\right),\tag{12}$$

Первый множитель в зависимости (12) равен значению a, определяемому зависимостью (7). Второй множитель при значениях $\kappa_{u} > 1$ может быть меньше единицы. В этом случае сдвиг материала вдоль условной плоскости, расположенной под углом β_1 , не произойдет.

Следовательно, для того чтобы исключить образование заусенцев необходимо увеличить κ_{u} до значений больше единицы. Как правило, это условие выполняется при лезвийной обработке. При алмазно-абразивной обработке κ_{u} <1. Причём по мере затупления режущего зерна коэффициент κ_{u} уменьшается $\kappa_{u} \rightarrow 0$.

Из этого можно сделать вывод о том, что полностью исключить образование заусенцев при алмазном шлифовании нельзя. Можно лишь уменьшить толщину заусенца, уменьшая величину a. Исходя из зависимости (12), это достигается увеличением угла ψ (коэффициента κ_{u}). При относительно небольших значениях угла ψ справедливо $tg\frac{\psi}{2} \Box \frac{\psi}{2} = \frac{\kappa_{u}}{2}$, то-

$$a = \frac{a_z}{\kappa_w} \cdot \left(1 + \frac{1}{\kappa_w}\right). \tag{13}$$

Величина a тем меньше, чем меньше толщина среза a_z и больше κ_u . В работе [2] получена аналитическая зависимость для расчёта κ_u :

гда

$$\kappa_{u} = \sqrt[3]{\frac{2a_z}{R} \cdot \frac{\tau_{coo}}{HV}} \,. \tag{14}$$

где R - радиус округления режущей части зерна, м; HV -твёрдость (по Виккерсу) обрабатываемого материала, H/M^2 .

Как видим, увеличить κ_{u} можно увеличением толщины среза a_z и уменьшением R, т.е. поддержанием в процессе шлифования высокой остроты режущих зёрен.

Учитывая то, что толщина среза a_z несущественно влияет на κ_u , в общем случае, для уменьшения величины a в соответствии с зависимостью (13), толщину среза a_z необходимо уменьшать. Следовательно, уменьшить a можно уменьшением двух параметров a_z и R. Причём, параметр a_z влияет на a в большей степени.

На основе полученного теоретического решения можно объяснить причину уменьшения толщины заусенца при шлифовании алмазным кругом на органической связке B2-01. Это связано с возможностью зёрен «утопать» в связку круга при шлифовании и участием в резании большего

числа зёрен. В результате — уменьшается толщина среза отдельным зерном a_z и, соответственно, параметр a.

При шлифовании алмазными кругами на металлической связке «утопание» зёрен отсутствует, в резании участвует меньшее число зёрен и толщина среза a_z увеличивается, что ведёт к росту параметра a.

Применение электроэрозионной правки алмазного круга на металлической связке позволяет уменьшить радиус округления режущей части зерна R и увеличить высоту его выступания над уровнем связки. Однако это ведёт к увеличению толщины среза a_z . Учитывая то, что параметр R не столь существенно влияет на a, добиться уменьшения a и толщины заусенца за счёт применения электроэрозионной правки круга не удаётся.

Как известно, наибольшее влияние на a_z оказывает зернистость круга. Поэтому задачу уменьшения толщины среза a_z необходимо решать путём уменьшения зернистости алмазного порошка в процессе притирки, когда обеспечивается одновысотное выступание зёрен над уровнем связки и в резании участвует значительно большее число зёрен, чем при шлифовании.

Для снятия заусенцев, образующихся на торцовых уплотнениях в процессе алмазного шлифования, разработана специальная технология, основанная на обработке шлифовальным полотном. Обрабатываемое торцовое уплотнение (в виде кольца) крепится в патроне сверлильного станка и торцевой поверхностью прижимается к шлифовальному полотну, расположенному в специальной пресс-форме.

Сообщая детали вращательное движение, производится удаление заусенцев и формообразование фасок кольца. Несмотря на небольшую продолжительность процесса, обрабатываемое кольцо нагревается. Это не позволяет удерживать его в руках и затрудняет выполнение технологической операции.

Применение водостойкого тканевого шлифовального полотна из электрокорунда нормального, зерно №10 14A (ГОСТ 13344-79), позволило решить проблему снижения температуры и продолжительности обработки фасок кольца за счёт повышения режущей способности полотна.

Список литературы

- 1. Якимов А. В., Новиков Г. В. Расчёт угла сдвига при резании материалов. Труды Одесского политехнического университета. Одесса, 2001. Вып. 5. С. 8 12.
- 2. Качество и производительность абразивно-алмазной обработки: Учеб. пособие /А. В. Якимов, Ф.В. Новиков, Г.В. Новиков, А.А. Якимов. Одесса: ОГПУ, 1999. 212 с.