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Abstract — The aim of this brief 

communication is to compare the 

calculations of confidence bounds based on 

the same data but using different methods.  

Key Terms — Confidence bounds, 

noncentral t-distribution, tail probability. 

The noncentral t-distribution is intimately 

tied to statistical inference procedures for 

samples from normal populations. For simple 

random samples from a normal population the 

usage of the noncentral t-distribution includes 

basic power calculations, variables acceptance 

sampling plans and confidence bounds for 

quantiles, tail probabilities, statistical process 

control parameters and variation coefficients. 

The purpose of these notes is to describe these 

applications in some detail, giving sufficient 

theoretical derivation so that these procedures 

may easily be extended to more complex 

normal data structures, that occur, for 

example, in multiple regression and analysis 

of variance settings. Firs of all, we are going 

to give a definition of the noncentral t-

distribution, that ties directly into all the 

applications. This is demonstrated upfront by 

exhibiting the basic probabilistic relationship 

underlying all these applications. Note, that a 

short list [1]-[6] is provided to give an entry 

into the relevant literature. 

So, let Z and V are independent standard 

normal and chi-square random variables 

respectively, the latter with f  degrees of 

freedom, then the following ratio have a 

noncentral t-distribution 
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with f  degrees of freedom and  noncentrality 

parameter . Although 1f   originally was 

intended to be an integer closely linked to 

sample size, it is occasionally useful to extend 

its definition to any real 0.f   The 

noncentrality parameter   may also be any 

real number. The cumulative distribution 

function (briefly cdf) of 
,fT   is denoted by 

, ,( ) ( ).f fP t P T t    

Remark here, that if 0  , then the 

noncentral t-distribution reduces to the usual 

central or Student t-distribution 
,G ( )f t  

increases from 0 to 1 as t  increases from   

to   and it decreases from 1 to 0 as   

increases from   to  . While the former 

is a standard property of any cdf, the latter 

becomes equally obvious when rewriting 

,G ( )f t  as follows: 
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As f  gets very large the distribution of 
,fT   

approximates the normal distribution of 

Z  (see, for example, a detailed analysis of 

behavior and corresponding plots with 

comments in [1]). 

The sample mean X  and sample standard 

deviation S are respectively defined as: 
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The following distributional facts are well- 

known: 

a) X and S are statistically independent; 

b) X  is distributed like a normal random 

variable with mean   and standard deviation 

/ n or equivalently, ( ) /Z n X    has 

a standard normal distribution (it means that 

 =0 and standard deviation S =1);               

c) 2 2( 1)S /V n    has a chi-square 
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distribution with 1f n   degrees of 

freedom and is statistically independent of Z. 

All one-sample applications involving the 

noncentral t-distribution can be reduced to 

calculating the following probability 

( ).P X aS b                       (1) 

To relate this probability to the noncentral 

t-distribution note the equivalence of the 

following three inequalities, which can be 

established by simple algebraic calculations: 

 X aS b 
,

/
f

Z
T a n

V f



     

/ .Z a nV f     

Using definition of Z, V (which was defined 

previously in terms of X  and S ), we have: 

2 2( )
( 1)S / .

n X
a n n f


 




    

Finally, substituting ( ) /n b      and 

1f n  , we obtain the inequality 

( ) ( )n X n b 

 

 
   

2 2( 1)S / ( 1),a n n n     

that leads after simple algebraic calculations 

and reducing to  

( ) ( )n X n b S
a n

 

  

 
   

or 

( ) / ( ) /
.

/

n X n b
a n

S

   



  
  

Thus, combine (1) with the latest 

inequality we conclude: 

, ,( ) G ( ).f fP T a n a n      

Usually tree of four parameters ( ,  ,a  ,n   ) 

were given for computation of 
,G ( )f a n . 

As we know, quality control deal with 

variables acceptance sampling plans (VASP). 

In a VASP the quality of items in a given 

sample is measured on a quantitative scale. 

An item is judged defective when its 

measured quality exceeds a certain threshold. 

The samples are drawn randomly from 

population of items. The objective is to make 

inferences about the proportions of defectives 

in the population. This leads either to an 

acceptance or a rejection of population quality 

as a whole. Speaking about a VASP it is 

usually assumes that measurements  1,..., nX X  

for a random sample of n  items from a 

population are available and that 

defectiveness for any given sample item i  is 

equivalent to ,iX L  where L   is some given 

lower specification limit (see, for example, 

[2]). Assume that we deal with a random 

sample from a normal population with mean 

  and standard deviation .  The following 

note will be it terms of the tail probabilities of 

a normal population. For a given threshold 

value 0x  we interested in the tail probability 

0
0 , 0( , , ) ( ) ,

x
p p x P X x Ф 


 



 
     

 
 

here ( )Ф x  denotes the normal distribution 

function, and p  can be interpreted in the 

context of VASP as the proportion of 

defective items in the population. Upper 

bounds for such probabilities p  could give a 

producer the needed assurance of having a 

proportion of defectives 0 ,p  the value used 

in setting up the VASP. Although 

 0( ) /p Ф x X S     is a natural but biased 

estimate of p  the construction of confidence 

bounds is not so obvious (see [1]-[4].). Firstly 

we will discuss the relationships between 

upper and lower bounds for left and right tail 

probabilities p  and 1 .q p   If ( )
U

p    

denotes an upper bound for p  with 

confidence level   (i.e. , ( ( ) )
U

P p p     ),  

then we also have , ( ( ) ) 1
U

P p p      for 

all ( , )  ; so that ( )
U

p   can also serve as a 

lower bound (1 ) ( )
L U

p p    for p  with 

confidence level 1 .  If the upper tail 

probability 1q p   of the normal 

distribution is of interest, then  1 ( )
U

p   will 

serve as lower bound for q  with confidence 

level  and thus as an upper bound for q  with 

confidence level 1 .  Thus it suffices to limit 

any further discussion to upper confidence 
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bounds for p .  In order to find these upper 

bounds we will use the following result of [5]: 

Lemma. If X  is a random variable with 

continuous and strictly increasing distribution 

function ( ) ( )F t P X t   then the random 

variable ( )U F X  is uniformly distributed 

over [0; 1], i.e., (U )P u u   for 0 1.u   

For constructing upper bounds we consider: 

0( ) / Sn x X   

0
1,

( ) / ( ) /
.

/
n

n x n X
T

S


   




  
   

Here 1

0( ) / ( )n x nФ p       is an 

increasing function of p ; note that Z  and *Z  

( *( ) / ( ) /Z n X Z n X          )   

have the same standard normal distribution. 

By the above Lemma  the random variable 

 1, 0 1, 1,( ) / S ( )n n nU G n x X G T         

has a uniform distribution over [0; 1]. Such a 

function U  of the sample data and the 

unknown parameters is called a pivot when its 

distribution is completely known, as in case 

here. The concept of pivots is often employed 

in constructing confidence sets. So, 

( 1 ),P U     since 1,nG   is decreasing in 

  and we have   

 1, 0( ) / S 1 ,nU G n x X          

here   solves  01,
( ) / S 1 .

n
G n x X





    

Hence,   is an upper confidence bound for 
1( )nФ p   with confidence level ,  

( ) ( / ) ( / )
U

p Ф n Ф n p         , 

Up  is the desired upper confidence bound for 

p  with confidence level  .  

We point out that the coverage probability 

statement in ( 1 )P U     holds for 

( , )  , which enter through U  in two-fold 

form, namely through   in 1,nG  and through 

the joint distribution of X  and S  in 

0( ) / Sn x X . This means that the coverage 

probability is constant in   and  , thus 

equals the confidence coefficient or the 

minimum coverage probability  . The same 

comment applies to tolerance bounds. 

 

To sum up, let us compare two previously 

discussed methods here. Confidence bounds 

based on the same data but using different 

methods are typically different. Furthermore, 

even if method which based on X and S  is 

generally superior to binomial method, it can 

happen (as in this instance) that the bound 

produced by binomial method is better than 

the bound produced by the first one method. 

According to [1], for example, both upper 

bounds are above the true target 0.02275 but 

the binomial bound happens to be closer. 

Finally, we point out from [6] that the 95% 

confidence curve has to be interpreted point-

wise, i.e., the probability for several such 

upper or lower bounds simultaneously 

covering their respective targets is less than 

0.95. 
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