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Investigations are devoted to the study of the extinction of solutions in finite time to initial-boundary
value problems for a wide classes of nonlinear parabolic equations of the second and higher orders with
a degenerate absorption potential, whose presence plays a significant role for the mentioned nonlinear
phenomena. As well known the extinction property means that any solution of the mentioned equation
vanishes in Ω in a finite time, i.e. ∃ 0 < T0 < ∞ : u(t, x) = 0 a. e. in Ω ∀ t ≥ T0 .

So, we investigate a model Cauchy-Neumann problem for parabolic equations of non-stationary
diffusion-semilinear absorption with a degenerate absorption potential. More precisely, the following
problem is considered:
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u(x, 0) = u0(x), x ∈ Ω. (3)

Here q > 1, 0 < λ < 1, and a0(x) ≥ 0 is an arbitrary continuous function. The initial function u0(x) is
from Lq+1(Ω), where Ω ⊂ RN (N > 1) is a bounded domain with C1 - boundary. The origin belongs to
Ω (0 ∈ Ω). The considered problem (1), (2), (3) has energy solution. It is follows from paper [1].

We obtain a sharp condition on the degeneration of the potential a0(x) that guarantees the long-time
extinction. Let a0(x) be a potential satisfying the inequality

a0(x) ≥ c0 exp
(
− ω(|x|)
|x|q+1

)
, x ∈ Ω \ {0}, (4)

where c0 > 0 is a constant, and ω(·) is an arbitrary function such that

(A) ω(τ) > 0 ∀τ > 0, (B) ω(0) = 0, (C) ω(τ) → 0 as τ → 0 monotone.

Let us formulate the main result of the work [2].

Theorem. Let u0(x) ∈ L2(Ω). Let ω(·) be a continuous nondecreasing function that satisfies assump-
tions (A), (B), (C) and the following main condition:
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dτ < ∞. (5)

Suppose also that ω(·) satisfies the technical condition

τ ω′(τ)
ω(τ)

≤ 1− δ ∀ τ ∈ (0, τ0), τ0 > 0, 0 < δ < 1.

Then an arbitrary energy solution u(x, t) of problem (1), (2), (3) vanishes on Ω in a finite time T < ∞.
Ideas of the proof is based on the local energy method in the spirit of papers [3], [4], [5].
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Also we investigate the local vanishing property in the finite time of solutions to the initial-boundary
problem for 2m order nonlinear parabolic equation with absorption of the following type problem:(
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u(0, x) = u0(x), x ∈ Ω. (8)

where Q = (0,+∞)×Ω, Ω ⊆ RN , N > 1, m ≥ 1, 0 ≤ λ < q, an absorption potential a(x) is nonnegative,
measurable, bounded in Ω function.

Modifying the local energy approach of [6], we obtain sufficient conditions, which guarantee the
extinction for the mentioned equation above. These conditions are depending on N , m, and on the
parameter of homogeneous nonlinearity of the main part in the equation q:
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ds < +∞ ∀ c > 0, for N = m(q + 1). (10)

Main results of the paper [7] are the following:

Тheorem.
If N 6= 2m and (9) holds, then any solution of problem (6), (7), (8) has the extinction in finite time.
If N = 2m and (10) holds, then any solutions of problem (6), (7), (8) has the extinction in finite time.
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