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A NEW STABLE SOLUTION TO THE LINEAR REGRESSION PROBLEM 

UNDER MULTICOLLINEARITY 

Tyzhnenko A. G. 

 

Abstract. The main shortcomings of the OLS solution to the linear regression 

problem under multicollinearity, which prevent from obtaining an adequate 

contribution of each regressor to the regressand, have been considered. 

 It is shown that the main cause of a common incorrectness regarding the 

economic aspect of OLS solutions is their great variability in the presence of 

data multicollinearity. 

 It is also shown that mathematically correct OLS-solutions can become 

economically incorrect with data collinearity increasing which leads to a 

diminishing of the physically correct codomain of the OLS-matrix. 

Existing in the literature methods to overcome the OLS-solutions great 

variability are considered both from economical and mathematical aspects. The 

considering provided shows with confidence the impossibility of existing 

methods to overcome the data multicollinearity problems both from 

mathematical and economic considerations such as choosing the best 

regressions, “lasso” and so on. 

 The detailed analysis of the situation with multicollinearity provided in the 

paper allows concluding that the only way out of this situation is to create a new 

method solution of the OLS-equation which should give a stable solution with 

small variability, as in the ridge-method, and small bias. Precisely such method 

is the Modified OLS (MOLS) which is proposed in the paper. 

 The MOLS is an approximate method which uses the known Tikhonov’s 

regularization principle and a new method solution to the regularized OLS-

equation, which is based on the modified Cramer’s rule, which is proposed in 

the paper.  

 It is shown that the MOLS method gives stable and practically unbiased 

solution to the linear regression problem regardless of the near-collinearity level 
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of the data used. Unlike the ridge-method, the MOLS method gives a negligible 

bias and does not require the optimization of the regularization constant. 

 The proposed MOLS method is verified in the paper for adequacy with the 

aid of the artificial data population (ADP), which is based on the Monte Carlo 

simulation method. Using the ADP, the new MOLS method is checked for the 

biasedness and stability for both small and large samples. 

 

Key words: multicollinearity, stable solution, almost unbiasedness, 

mathematical correctness, physical correctness, ridge-regression 

 

 

 

 

НОВИЙ МЕТОД СТАБІЛЬНОГО РІШЕННЯ ЗАДАЧІ ЛІНІЙНОЇ РЕГРЕСІЇ В 

УМОВАХ МУЛЬТІКОЛІНЕАРНОСТІ 

Тижненко О. Г. 

 

Анотація. Розглянутo існуючі проблеми рішення багатофакторної задачі 

лінійної регресії за наявністю мультиколінеарності методом найменших 

квадратів (МНК), які не дозволяють отримати адекватне рішення 

економічної проблеми оцінки впливу кожного окремого регресора на відгук. 

 Виявлені причини появи некоректних рішень економічної задачі 

регресії математичним методом найменших квадратів, які пов’язані з 

великою варіабельністю МНК-рішення при значної колінеарності даних. 

 Показано, що некоректні з точки зору економіки математичні рішення 

стандартного МНК виникають при збільшенні рівня колінеарності даних  за 

рахунок зменшення області фізичної коректності МНК-матриці. 

 Розглянуто існуючі на сьогодення методи подолання великої 

варіабельності МНК-рішень як з економічної, так і з математичної точки 

зору. Проведений розгляд з очевидністю показує неспроможність існуючих 

на сьогодні методів подолання проблеми мультиколінеарності як з боку 
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математиці, так і з боку економічного розгляду спрощення самої 

економічної проблеми: вибір найкращих регресій, lasso і т. і.  

Проведений аналіз дозволив зробити висновок, що єдиним виходом з 

існуючій ситуації є створення нових методів розв’язку МНК-рівняння які б 

давали рішення з малою варіабельністю, як в ridge-методі, наприклад, але 

з малим зміщенням. Саме таким методом є новий модифікований метод 

найменших квадратів (ММНК), який є представленим в роботі. 

ММНК є наближеним методом, в якому є використаним метод 

регуляризації Тіхонова і новий метод рішення регуляризованого МНК-

рівняння, заснований на модифікованому методі Крамера, який 

запропонован в статті.  

Показано, що ММНК дає стійке та практично незміщене рішення 

задачі лінійної регресії при будь-якому рівні колінеарності даних. На відміну 

від методу ridge-регресії, ММНК не потребує оптимізації константи 

регуляризації. 

Запропонований в роботі ММНК перевіряється на адекватність за 

допомогою штучної генеральної сукупності, яка створена за допомогою 

методу Монте-Карло. З використанням цієї генеральної сукупності в роботі 

показана як практична незміщеність ММНК, так і висока стабільність рішень 

задачі регресії як для великих, так і для малих вибірок. 

 

Ключові слова: мультиколінеарність, стабільне рішення, майже 

незміщеність, математична коректність, фізична коректність, рідж-регресія  

 

НОВИЙ МЕТОД СТАБИЛЬНОГО РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОЙ 

РЕГРЕССИИ В УСЛОВИЯХ МУЛЬТИКОЛЛИНЕАРНОСТИ 

Тыжненко А. Г. 

 

Аннотация. Рассмотрены существующие проблемы решения 

многофакторной задачи линейной регрессии в условиях 

мультиколлинеарности методом наименьших квадратов (МНК), которые не 
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позволяеют получить адекватное решение экономической проблемы 

оценки влияния каждого отдельного регрессора на отклик.  

 Выявлены причины некорректного решения экономической задачи 

регрессии математическим методом наименьших квадратов. Эти причины 

связаны с большой вариабельностью МНК-решений при значительной 

коллинеарности данных. Показано, что некорректные, с точки зрения 

экономики, математические решения стандартного МНК возникают при 

увеличении уровня коллинеарности данных за счет уменьшения области 

физической корректности МНК-матрицы.  

 Рассмотрены существующие на сегодняшний день методы борьбы с 

большой вариабельностью МНК-решений как с экономической, так и с 

математической точек зрения. Проведенное рассмотрение убедительно 

показывает недееспособность существующих на сегодняшний день 

методов преодоления мультиколлинеарности как со стороны математики, 

так и со стороны экономического рассмотрения способов упрощения самой 

экономической проблемы: выбор наилучших регрессий, lasso, и т.д.  

 Проведенный анализ позволяет сделать вывод о том, что 

единственным выходом из существующей ситуации есть создание новых 

методов решения МНК-уравнения, которые давали бы решения с малой 

вариабельностью, как в ridge-методе, например, но с малым смещением. 

Именно таким методом  является новый модифицированный метод 

наименьших квадратов (ММНК), который представлен в работе. 

 ММНК является приближенным методом, в котором использован 

метод регуляризации Тихонова и новый метод решения регуляризованого 

МНК-уравнения, основанный на модифицированном методе Крамера, 

который предложен в статье. 

 Показано, что ММНК дает устойчивое и практически несмещенное 

решение задачи линейной регрессии при любом уровне коллинеарности 

данных. В отличие от метода ridge-регрессии, ММНК не требует 

оптимизации константы регуляризации. 

 Предложенный в работе ММНК, проверяется на адекватность с 

помощью искусственной генеральной совокупности, созданной с помощью 
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метода Монте-Карло. С использованием этой генеральной совокупности, в 

работе показана как практическая несмещенность ММНК, так и высокая 

стабильность решений задачи линейной регрессии, как для больших, так и 

для малых выборок. 

   

Ключевые слова: мультиколлинеарность, стабильное решение, 

практическая несмещенность, математическая корректность, физическая 

корректность, ридж-регрессия  

 

Preamble 

An economic insight into the multiple linear regression solutions can be 

figured out as the obtaining of significant estimates of regression coefficients 

that represent the mean change in the response variable for the unit changing in 

the predictor variable while holding other predictors in the model constant. 

It is clear from the economical point of view that the mathematical solution 

to the linear regression problem must be stable and the regression coefficients 

obtained must have the same signs that the partial regression coefficients 

between the regressand and regressors have. It is known that this is frequently 

not the case if the regression problem is solved with the aid of the common OLS 

method. In this paper a new method solution to the linear regression problem is 

proposed in which a common great instability of the OLS is overcome. 

This problem is considered in the paper under the following assumptions: 

the residual error is normal,          ; the relationships between variables are 

linear in the population; all assumptions of the Gauss-Markov theorem are 

fulfilled; non-stochastic regressors are considered. 

From a mathematical point of view, the linear regression problem is 

formulated as the curve fitting problem [1-7]. The OLS method of solving the 

linear regression problem can give an adequate solution of economic regression 

problem if the regressors are near-orthogonal. Unfortunately, this is not the case 

in practice. 

 The main drawback that prevents the OLS solution from being adequate to 

an economic problem is the near-collinearity of regressors [8-19].  
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In terms of just a curve fitting problem, the OLS always gives 

mathematically correct result regardless of the regressors’ collinearity level (the 

VIF-factor, for example). However, with the VIF-factor increasing, the variability 

of the OLS-solution drastically increases for not very large samples. This issue 

prevents from getting an adequate economic solution to the regression problem 

in practice. 

The data near-collinearity is not the single source of the regression 

solution errors. Another source of errors is the non-linearity of the population 

that is investigated. This problem concerns the regression model inadequacy 

and may, in principle, be eliminated with the aid of appropriate data 

transformations. 

Very important source of errors in regression solutions is the wrong model 

specification [9, 12], but this problem is connected with economic considerations 

and is not considered in this paper. 

Different remedies have been proposed to dealing with ill-conditioning and 

near-collinearity including regularization and ridge regression, omitting variables, 

grouping variables in blocks, collecting additional data and so on; among others 

see [4, 9 - 21].  

However, these remedies may be time-consuming, costly, impossible to 

achieve or controversial [22]. Also, the diagnostic tools that signal the presence 

of near-collinearity are crucial. More than that, the author agrees with [23] that 

any signal of multicollinearity does not exist at all because “multicollinearity is a 

matter of degree rather than one of kind.”  

Despite the theoretical warnings about the inadmissibility of using OLS in 

the presence of near-collinearity of any level, this technique is still in use in 

practice, in economic and other studies, with attempts to reduce somehow the 

level of collinearity. Many years of efforts did not yield any results in the search 

for a critical level of near-collinearity. It seems that A. C. Harvey in [23] was right 

that there is no such a critical level at all and the influence of near-collinearity at 

any OLS solution is a continuous process which depends on many parameters. 

This issue is also confirmed by the following further considerations of OLS-

solutions properties.  
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In reality, with a sample size decreasing, the presence of the data near-

collinearity usually leads to an unacceptable increase in the OLS estimates 

dispersion which makes the OLS solution inadequate in terms of economic 

content. For instance, signs of the OLS estimates may be incompatible with their 

economic meanings. 

Such a behavior of OLS-solutions immediately follows from the Cramer's 

rule and the determinant decomposition by matrix eigenvalues. The presence of 

small eigenvalues in the numerator and the denominator of the Cramer's 

formula can lead to significant changes in the solution due to random changes in 

the data observed and then in eigenvalues. 

As for the appearance of incorrect signs in the OLS solutions, that is when 

solutions have no economic (in general, physical) sense, this phenomenon, as 

shown in the paper, is connected with the fundamental property of nonsingular 

square matrices. 

It has been revealed that any non-singular matrix operator has a codomain 

that consists of two parts, which we called codomains of physical correctness 

(  ) and incorrectness ( ̅ ) of the corresponding matrix equation solution. 

That is, any matrix equation Ax = b always has a mathematically correct 

solution but such a solution may be either physically correct or physically 

incorrect.  A solution is physically correct if it has an economic (a physical) 

meaning. The solution of the same equation is physically incorrect if its solution 

has no physical meaning. In the latter case, the solution necessarily changes 

the signs of some solution components.  This issue depends on the RHS (   

only. That is, a solution of the matrix equation Ax = b is physically correct if 

     and is incorrect otherwise. 

It has been shown in this paper that this effect holds for any matrix 

equation with square non-singular matrix. However, with the matrix conditional 

number increasing, the codomain of physical correctness,   , is becoming more 

narrow.  This issue may lead to the RHS of matrix equation being outside of    

due to random errors in matrix elements. If it is the case, there will be a change 

in signs of the solution components. This issue is often observed in OLS 

solutions to the regression problem due to their large variability. 
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Thus, the main drawback of the OLS method is a narrow codomain of 

physical correctness in presence of near-collinearity and the high variability of a 

solution in the case when an observed sample size is not very large. Both these 

effects promote the exit of the RHS from the    under the influence of random 

errors. This one does not allow finding the suitable estimates of regression 

coefficients in the population. 

The advantage of the OLS is the unbiasedness and consistency of a 

solution and its variance, i.e. a reduction of the sample regression coefficients 

variance with a sample size increasing and the approach of the mean value of 

the OLS solutions to the regression coefficients in the population, which makes 

it possible, in general, to estimate, with the aid of data modeling, the adequacy 

of the regression problem solution when this problem is solved by any other 

method. 

Thus, due to the properties of OLS-solutions which are proved 

theoretically, one can test, in principle, the regression problem solution results 

obtained by other methods for which the closeness of the estimated coefficients 

to the population ones cannot be proved theoretically. 

As to the influence of near-collinearity on the variability of the OLS 

solutions, the prior investigations unambiguously show the need to create new 

methods solution the linear regression problem, which would give a small bias 

and acceptable solution variability for not very large samples. 

Any new method solution to the linear regression problem should give the 

regression coefficients which have to approach in probability the coefficients of 

the OLS solution when sample size increases unlimitedly. This issue is a 

consequence of OLS solutions unbiasedness and consistency, which allows us 

to test a new method with the aid of data simulation.   

The unbiasedness and consistency of OLS solutions is also manifested in 

the fact that the mean of many times (   ) repeated OLS-solutions for 

samples of limited size ( ) drawn from a population converges in probability to 

the population solution (regression coefficients) with   increasing. This one is 

also used in the paper for testing new methods solution to the linear regression 
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problem with the aid of the artificial population (ADP) worked out in the paper for 

this purpose.  

In this paper, a new method (MOLS) is proposed which produces stable 

solutions with a negligibly small bias to the linear regression problem under 

near-collinearity of any level for samples of any size. 

The MOLS is based on the OLS for standardized variables with some 

modifications. The OLS matrix equation          is replaced by the 

regularized equation               with very small regularization constant 

       . This equation is solved further with the aid of modified Cramer’s rule 

which is suggested in the paper. 

Unlike the ridge regression, the modified OLS (MOLS) method gives 

practically zero bias and does not require the regularization constant     

adjustment for any collinearity level. 

To disadvantages of the MOLS can be attributed a large computer loading 

that prevents applying this method for a large number of regressors (more than 

200-300). 

 The new method’ (MOLS) adequacy has been verified with the aid of a 

special Artificial Data Population (ADP) developed in the paper. The linear 

regression problem modeling with such a population differs from the standard 

one [26] in that it does not use a priori giving regression coefficients in a 

population. Instead of this, the ADP method simulates a population with 

unknown regression coefficients which values can be precisely estimated by the 

OLS solution for a very large sample size, using its consistency property. 

 The essence of the ADP method checking for adequacy consists of a priori 

giving a regressand vector Y and setting the regressor vectors {  } geometrically 

with given angles to the regressand vector. With the angle between regressor 

and regressand vectors diminishing, the absolute value of the corresponding 

regressor’ coefficient should increase.  If two regressors, for instance, have the 

same angle to the regressand, the corresponding regression coefficients in the 

population should be equal. If two regressor vectors have angles with 
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regressand vector which differ by    , their regression coefficients should have 

opposite signs and be equal in absolute value.   

 Then, with such an artificial population in hand, one can construct various 

situations for the population regression coefficients which allow estimating the 

adequacy of a new method solution to the linear regression problem. For each 

modeled situation with population regression coefficients, one has an 

opportunity for estimating the population regression coefficients with the aid of 

the asymptotic OLS solution. This one allows estimating both the biasedness 

and variability of any new linear regression solution method for any sample size. 

 Creating a new method data simulation (ADP) for testing the linear 

regression problem solutions is connected with the incorrectness of the 

conventional simulation method [26] for multiple regression in which for a priori 

given regressors,      , and population regression coefficients,      , one sets 

many times ( ) a random residual error,       for calculating   regressand 

realizations,     .  

 The matter is that the given regressors,      , defines exactly the OLS-

matrix     of the matrix equation          , which has a definite codomain of 

physically correctness,   . In order to make this matrix equation have a correct 

solution, the RHS     should belong to this   . If we set the population 

regression coefficients arbitrarily, we make the regressand Y arbitrary as well 

and so the RHS    . A such calculated RHS may not belong to this   . This one 

will lead to a physically incorrect solution to the linear regression problem. The 

situation may change only if we take as a priori regression coefficients those 

ones which are close to the population coefficients. However, it is not probable 

to guess randomly the regression coefficients which are close to the true ones. 

It is worth noting again that the developed ADP permits us not only to test 

the biasedness of a new method solution to the linear regression problem but 

also to estimate the variability of sample regression coefficients. For this one, 

we can draw from the ADP a large series of replicas with a given size and 

calculate the standard deviation of regression coefficients obtained by the OLS 

and the new method.  
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 From a mathematical point of view, the solution of the equation      is a 

vector   that gives a zero discrepancy:           Herewith, not raised the 

question of what a real problem is solved. It is revealed in this paper that such a 

situation is not always admissible. This is the case, for instance, in the basis 

changing problem in a vector space.  

In most real problems connected with the equation      one has to 

consider the context of the problem. It has been revealed that a common 

condition of zero discrepancy does not indicate the correctness of a real 

problem solution. 

 

Codomain of physical correctness 

 

Definition: any n-dimensional nonsingular square matrix   over the reals 

has the     as its codomain which consists of two parts,    and  ̅  (    ̅  

  ), where     is a codomain of physically correct solution of matrix equation 

     (    ) and  ̅  is a codomain of physically incorrect solution of matrix 

equation      (   ̅ ).  

If     , the signs of exact solution components of the equation      

are consistent with the signs needed for the real problem which is investigated 

and the solution is stable for any condition number of matrix   if the random 

errors of matrix elements do not remove the RHS vector   from   . 

Otherwise, if    ̅ , the signs of exact solution components of the 

equation      are not consistent with the signs needed for the real problem 

that is investigated with this equation.  

In general, the exact solution of equation      changes the signs of 

some solution components when vector   passes from     to   ̅ . The absolute 

values of solution components depend on the orientation of the RHS vector and 

increase with the matrix   condition number increasing if    ̅ .  

Both these issues are inappropriate for a real problem that is investigated. 

More than that, if     ̅ , the exact solution of equation Ax b  is unstable in the 
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ill-conditioning case,          . Geometrically this one follows from projection 

properties. If a RHS is outside of   , projections of the RHS on the bases 

vectors increase with the RHS moves away from   . The more is the condition 

number of the matrix, the narrower is     This one enlarges the projection 

values and, consequently, the absolute values of solution components. 

Because of the linear regression problem OLS-solutions are based on the 

matrix equation solution, in the case of near-collinearity, such solutions may 

reveal both the appearance of unexpected signs of the regression coefficients 

and their abnormal absolute values.  

The first problem is connected with the exit of the OLS-equation RHS from 

the codomain of physical correctness (  ) due to random errors in observed 

data. 

The second problem relates geometrically to narrow    and 

mathematically to a small determinant of the OLS-matrix in presence of random 

errors in matrix elements. 

Geometrical considerations to system solution in 2D 

Consider the first problem of unexpected signs of the regression 

coefficients using the example of two-dimensional full rank matrix equation:  

 

                 ,    (1) 

where 

   (
   

   
)     (

   

   
)    (

  

  
). 

 

From geometrical point of view, equation (1) is the coordinate-wise 

representation of the vector   with respect to the basis         .  

Suppose the angle between the basis vectors    and    is significantly 

smaller than    ; vector   is located between them; all vectors belong to the 1st 

quadrant (Fig. 1(1), Appendix A).   

Let a small 2D area between vectors (  ,   ) and (   ,    ) be the matrix 

  codomain of physical correctness,    (Fig. 1(1)). The vectors    and    in Fig. 

1(1) are the projects of vector   on basis vectors    and   . From this drawing 
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we can see that in this case both equation (1) solution components are positive 

(       ,        ). Seemingly, if for the same basis vectors the RHS has the 

inverse  direction      and is located between     and     vectors, both 

solution components are negative. In both this cases the solutions components 

have the same signs. 

 Another situation is shown in Fig. 1(2), where the RHS vector   is located 

between vectors     and    (in the wide 2D area that we denoted as  ̅  ). In 

this case the solution components have different signs, (                ). 

Analogous situation will be if the only basis vector    changes the direction. 

 This simple example demonstrates the fundamental property of non-

singular matrices: a matrix equation      has fundamentally different 

solutions for      and    ̅ . If   ̅  , the solution of this equation is 

mathematically correct, but has no physical meaning. Which part of the whole 

codomain (  ) is    should be determined from economic considerations. Worth 

noting, that this property is not connected with the conditioning of matrix 

equation.   

 Summarizing, we can state that any determined matrix equation      

has both physically correct and physically incorrect solutions depending on the 

RHS. In both cases solutions are mathematically correct. 

 Let us demonstrate the existence of the fundamental property of non-

singular matrices using the example of a simple economic problem. 

2D selling problem 

Suppose you are selling hot dogs and sodas. Each hot dog costs $1.50 

and each soda costs $0.50. At the end of the session you made a total of 

$78.50. You sold a total of 87 hot dogs and sodas combined. You must report 

the number of hot dogs sold and the number of sodas sold. How many hot dogs 

and sodas were sold separately? Shortly: one hot dog costs $1.5; one soda 

costs $0.5. A common sale $78.5. A common number of units sold is 87. How 

many hot dogs (  ) and sodas (  ) ware sold separately? System (    ): 

 

 {
                

        
 .                                          (2) 
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Here, det(A)=1; cond(A)=4.27. The system (2) is well-conditioned. The Gauss’ 

solution in the Matlab is:              . The basis vectors have the 

following coordinates: 1 2(1.5;1), (0.5;1)a a  . Let us write down the RHS as 

follows:               . Then, it is clear that the RHS vector lies between    

and    and belongs to the codomain of physical correctness,   , since there 

projections on    and    are positive as it should be from economic 

considerations. 

Let us consider further the system (2) solution behavior with the RHS 

vector b changing if the common sale is fixed,       $78.5. 

The marginal values of the RHS vector b inside the    can be determined 

from the parallel conditions:       and      . That are:                  

          ̅ . According to the economic meaning of the problem, we take 

        . So, the common number of units sold can vary within [53; 157] in 

order to     . 

If            , the solution is         . This means that 52 hot-dogs 

and one soda was sold. If             , the solution is          . This 

means that no hot-dogs but 157 sodas ware sold. It is clear, that inside    there 

are also other RHSs that give the whole solutions. For example, for   

           we have the solution:           . 

In any other practical situation, one can also sell a part of the unit and then 

the solutions do not have to be whole numbers. In general case, we can find a 

solution of such an equation in real numbers.  

Suppose the right-hand side vector b does not belong to the   . It is the 

case if          ̅  or         . For example, let the common number of 

units sold is        . Then the solution is           . This solution is 

incorrect relative to the investigated problem. Suppose now that         . 

Then,             and is also incorrect. This means we cannot set arbitrary 

the RHS of equation (1) if we investigate any practical problem. If we do that we 

can obtain a solution with wrong signs despite the fact that the system is well 

conditioned.  
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 This example demonstrates an important property of a linear system 

solution regarding of its adequacy to the economic problem which is 

investigated with the aid of such system. If the RHS of a system does not belong 

to this system' matrix codomain of physical correctness, a mathematically 

correct solution to this system will be not correct for the practical problem under 

investigation. 

 Because of a linear system solution necessarily changes the signs of 

some solution components when the RHS passes from one codomain to 

another one, the codomain of physical correctness can be easily determined if a 

practitioner knows exactly what signs of solution components are correct. This is 

the case for the regression problem, for example, in which one knows that the 

regression coefficients must have the same signs as the correspondent partial 

regression coefficients for the regressand and regressors.  

The problem of physical correctness in linear regression 

There is no consensus in the economic literature on the discussion of the 

OLS-solution properties. As an aside, the matrix equation      with a non-

singular square matrix   should always have a unique solution for any      

from mathematical point of view. As another aside, it is clear that for ill-

conditioned matrices ( ) the matrix equation (    ) solution may be not 

always true from the point of view of the applied problem that is investigated. 

This situation was characterized by [12] as follows: “Multicollinearity is 

God’s will, not a problem with OLS or statistical technique in general.” “Only use 

of more economic theory in the form of additional restrictions may help alleviate 

the multicollinearity problem.” “One should not, however, expect miracles; 

multicollinearity is likely to prevent the data to speak loudly on some issues, 

even when all of the resources of economic theory have been exhausted.” 

Denoted by [12] such a situation with multicollinearity has not changed to 

date [4, 5, 6, 19, 22], as far as the authors know. 

As we can see from the above, the OLS solution problems under 

multicollinearity are connected with the ill-conditioning of OLS matrix equation 

    , which matrix, as any non-singular matrix, has its codomains of physical 

correctness (  ) and incorrectness ( ̅ ). The increasing of near-collinearity level 
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in data leads to increasing the condition number of the OLS-matrix and then to a 

contraction of the physical correctness (  ) codomain. Besides that, the 

increasing of ill-conditioning level leads to increase variability of OLS-solutions 

due to decreasing of the OLS-matrix minimal singular number. Both these 

issues can drastically spoil the OLS solution to the linear regression problem: 

the regression coefficients may be too large in values and become of wrong 

signs if the errors in data remove the RHS of matrix equation from the physical 

correctness (  ) codomain, which has become too narrow. 

In general, the instability of the OLS solutions to the linear regression 

problem depends on two parameters only: the VIF-factor and the sample size. 

With the VIF-factor increasing, the volatility of the OLS solutions increases. With 

the sample size increasing, the volatility of the OLS solutions decreases. For 

any value of the VIF-factor one can find such a large sample size that for any 

sample, the RHS of the OLS matrix equation will belong to the physical 

correctness codomain (  )  and the OLS solution will be stable and 

economically correct. For small and not very large samples this is not the case, 

as a rule. 

It is also worth to note that a physically correct and stable OLS solution 

may have yet sufficiently large standard deviation, because it is desirable to 

estimate the standard deviation of the obtained solution by the Monte Carlo 

simulation. The method of such a kind is proposed in this paper. 

Summarizing, we can state that the only fruitful strategy of struggle with 

the near-collinearity in the linear regression problem is the construction of new 

methods solution to this problem which would provide stable physically correct 

solutions with standard deviations much less than the absolute values of 

solution components (regression coefficients).  Besides that, such methods 

would be negligibly biased. Such a method is proposed in the paper. 

Modified OLS method 

For obtaining a stable solution to the linear regression problem in the 

standardized form, we propose here the modified OLS (MOLS) that used the 

modified Cramer’s rule, which has been invented in the paper, instead of the 

Gauss’ method solution to algebraic systems. 
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The MOLS is based on the OLS for standardized variables with some 

modification: the OLS matrix equation  

 

                                                        (3) 

 

is multiplied by        and replaced by the regularized equation 

 

                                                       (4) 

 

 with small   (        . This equation is solved further with the aid of the 

modified Cramer’s rule. 

The modified Cramer’s rule is intended to solve the definite ill-conditioned 

systems          that arise in the standardized linear regression problems 

(all variables are standardized). For brevity, let us wright down this system as 

usual: 

 

    ,                                                     (5) 

 

with      ,    ,      . Multiply further (5) by   : 

 

        . 

 

Let us denote further:         
      and solve the equation 

 

      .                                                    (6) 

 

Taking into account a possible ill-conditioning of the matrix   , let us reduce the 

conditioning level by adding a regularizer to   . A new matrix let us designate by 

   

 

       , 
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where   is the identity matrix and       (optimal value that gives a minimal 

RSS is        ). Let us replace the equation (6) by a regularized equation 

(basic and single approximation): 

 

      .                                                     (7) 

 

According to the Cramer’s rule, the solution of this equation can be written as 

 

 ̃  
  

 
 ,                                                           (8) 

 

where 

 

   ∑                ( (     ))
 
    ,                                 (9) 

  ∑                            
 
    ,                                (10) 

 

and                     . Here,          is the matrix  , from which the 

k-th row and j-th column are crossed out,        is the (k, j) element of matrix  . 

That is, the formulas (8-10) figure out as the common Cramer’s rule, in which 

the Laplace’ formula is used.  

 In (8) we always can multiply the numerator and denominator by any 

determinant of some nonsingular matrix. As such a matrix we take   
   – the 

inverse of the matrix   , where    is the matrix  , from which the j-th row and j-

th column are crossed out. For each   we multiply the numerator and 

denominator in (8) by different determinant    (  
  ). Using the determinant 

property: 

 

                    , 

 

we can write down the determinants (9, 10) as follows: 
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  ̃  ∑                (  
   (     ))

 
                                 (11) 

 ̃ ∑                     
           

 
    ,                              (12) 

 

without changing in solution (8) to the equation (7). Then, the approximate 

solution to the equation (3) we can record as follows: 

 

 ̃   ̃  ̃⁄  .                                                          (13) 

 

As our investigations have shown, such a simple transformation leads to 

substantial stabilization of solution to the linear regression problem under near-

collinearity, if we choose the regularization constant as         (MOLS 

method). Regardless of the collinearity level, the solution (13) gives practically 

unbiased solution using the MOLS in the linear regression problem and 

practically the same small variance of the regression coefficients as in the 

correspondent ridge regression solution with regularization constant      . 

 To the disadvantages of the MOLS one can attribute high complexity of 

calculations. This one prevents from using this method for big data analysis with 

number of regressors larger than 200-300. 

 It should be noted that the modified Cramer’s rule outlined above should 

not be used for solving common ill-conditioned linear systems of large size. For 

common systems this method is subject to accumulation of computational errors 

while computing the determinants.  

In standardized regression problems the computational errors are mutually 

neutralized due to data centering. This issue makes it possible to solve the 

linear systems with sufficient accuracy up to the order of 200-300 (regressors). 

  Worth noting, that both the MOLS and ridge-regression are approximate 

methods of stabilization of the OLS under near-collinearity. Both methods use 

the same idea of regularization of the ill-conditioned OLS matrix equation with 

the aid of replacement of the original matrix ( ) by the one that is close to it 

(    ) [24, 25] and [10]. However, the difference between the MOLS and 
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Ridge methods is that in the MOLS a neutralization of ill-conditioning is used 

with the aid of multiplication of the matrix          by the inverse matrix   
   in 

(11, 12). Such neutralization drastically improves the situation with ill-

conditioning for a very small regularization constant (       ) and reduces 

significantly the dependence of the solution on this constant. The latter one 

allows us not to search for the optimal value of this constant. In all cases one 

can use the only constant value of         . That one allows obtaining in all 

cases practically the same RSS for the MOLS as for the OLS. 

 The disadvantage of the MOLS, as well as of the ridge-regression, is the 

lack of the ability to estimate theoretically the variance of the regression 

coefficients obtained with the aid of the observed sample. 

 Then, for any new method solution to the linear regression problem, we 

have to estimate both the biasedness of a solution and its variance. Let us 

consider these issues with the aid of the Monte Carlo simulation method. 

Artificial data population 

 To test any new method solution to the linear regression problem for 

adequacy, we use in this paper the artificial data population (ADP) 

reconstruction. Such a population has given parameters of contained variables 

but a priori unknown regression coefficients. All variables of this population have 

linear relationships between themselves and are normal. The last condition is 

optional.  

 From such a population one can draw samples of any size. Very large 

samples from this population allow us to estimate the regression coefficients in 

the population with a priori given accuracy due to the unbiasedness and 

consistency of OLS solutions. In turn, the knowing of the population regression 

coefficients allow us to estimate the biasness of a new method solution (using 

very large samples) and variances of its sample regression coefficients (using 

multiple drawing of samples of the given size). 

 Consider the creation of an artificial population mentioned above. At first, 

let us set a priory any regressand   and auxiliary vector            , where 

             is a standard normal vector of size   taken from the MATLAB 



21 

 

pseudo-random generator and   – a constant which a priori sets the near-

collinearity level. Regressors      are constructed with the aid of the auxiliary 

vector  :       , where             and    is the angle between   and    

vectors. With diminishing of   , the mean influence of    on    increases as the 

projection of a unit increment along the trend and that, the correspondent 

regression coefficient     in the modeled population increases also. For 

modeling stochastic regressors, the pseudo-random function       restarts for 

each replica.  

 This method makes it possible to create a population, in which all 

regression coefficients are the same, for instance, or these ones are decreasing 

(increasing) in a given manner, or these are having the given signs. These 

issues allow one to test a new method solution to the linear regression problem 

for adequacy.  

 The data simulated with this method have been denoted as         , 

where   is the number of regressors,   is the sample size and   sets the near-

collinearity level. To this notation, we should add a set of angles {  } which sets 

the regression coefficient values in the artificial population         . 

The modified OLS method testing 

 Let us consider the artificial population             with the set of angles 

{  }                 for demonstrating the stability and small biasedness of the 

modified OLS (MOLS) method. With this set of angles {  }, the first two 

regression coefficients in the population should be equal and much more in 

value than the others. Other coefficients are descending in magnitude. All 

coefficients have to be positive.  

 

Table 1. OLS, MOLS and Ridge solution means and theirs standard deviations via sample size   

under severe near-collinearity (                ).  

Method                     

Single sample solutions 

 OLS 

MOLS 

Ridge 

10 

10 

10 

-0.0099 

-0.0124 

1.3452 

5.9015 

2.2868 

2.0815 

6.4643 

2.2910 

2.0791 

-0.4212 

0.2350 

0.2168 

-0.0539 

0.1153 

0.1050 

0.0644 

0.0353 

0.0320 
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With the sample size ( ) increasing the MOLS solution should approach in 

probability to the OLS solution mean if it is almost unbiased. Exactly this issue 

one can see in the Table 1 for         for a single sample solution. We also 

see that in population       and the other coefficients are decreasing in value. 

As the estimates of the population coefficients we can take the mean OLS 

solution for         :                                         

      . If we look at the single MOLS-solution for      in the Table 1, we can 

see practically the same values for regression coefficients as that for the OLS 

with         . The same thing can be seen for the ridge-method (     ), 

except for being a bias.  

 Solution’ standard deviations for both MOLS and Ridge methods are equal 

and drastically smaller than those of the OLS method. So, this comparison 

confirms the stability and small bias of MOLS solutions, and demonstrates a 

possibility of finding a correct solution to the linear regression problem both for 

small and large samples. 

 As for the ridge-method, we use only one value of the regularization 

constant,      , for all calculations in this paper, that gives the most stable 

solution with not very large bias as we can see in Table 1. More than that, as a 

 OLS 

MOLS 

Ridge 

10000 

10000 

10000 

-0.0004 

0.0002 

1.3671 

2.2853 

2.2862 

2.0785 

2.2859 

2.2859 

2.0785 

0.2428 

0.2384 

0.2167 

0.1238 

0.1155 

0.1050 

0.0346 

0.0353 

0.0321 

Mean regression coefficients (    sample replics) 

 OLS 

MOLS 

Ridge 

10 

10 

10 

0.0002     

0.0008 

1.3642 

2.3190 

2.2858 

2.0781 

2.3217 

2.2859 

2.0782 

0.2346 

0.2383 

0.2167 

0.1129 

0.1155 

0.1050 

0.0356 

0.0353 

0.0321 

 OLS 

MOLS 

Ridge 

10000 

10000 

10000 

0.0001 

0.0007 

1.3637 

2.2860 

2.2859 

2.0782 

2.2864 

2.2859 

2.0782 

0.2386 

0.2383 

0.2167 

0.1154 

0.1155 

0.1050 

0.0352 

0.0353 

0.0321 

Standard deviations of regression coefficients (    sample replics) 

 OLS 

MOLS 

Ridge 

10 

10 

10 

0.0202     

0.0129 

0.0059 

2.7236     

0.0043 

0.0039 

2.7046  

0.0044  

0.0040   

0.2757  

0.0005    

0.0004 

0.1384  

0.0002 

0.0002   

0.0411 

0.0001 

0.0001 

 OLS 

MOLS 

Ridge 

10000 

10000 

10000 

0.0011    

0.0059 

0.0059 

0.1455     

0.0003 

0.0003 

0.1465   

0.0003 

0.0003  

0.0152    

0.0000 

0.0000 

0.0073 

0.0000 

0.0000      

0.0022 

0.0000 

0.0000 
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rule of thumb one can obtain practically unbiased ridge-solution with this  , if 

she or he multiplies all single sample ridge-solution components (except for   ) 

by the number 1.1. This one we can see in Table 1 if we multiply the ridge 

solution by the value of 1.1 for both      and        .This rule has 

produced an excellent result in all our investigations but it requires confirmation 

on a larger database.  

 It is worth noting that the considered simulation procedure allows also 

demonstrating the confidence intervals diminishing for the MOLS method 

compared to the OLS one. One can also verify the significance of sample 

regression coefficients by the proposed simulation method with the aid of the z-

test considering that she or he knows precisely the correspondent variances of 

the sample regression coefficients.  

 In general, the developed simulation method allows comparing the 

common OLS with the new MOLS method for demonstrating the advantages of 

the latter. Although this simulation method is not intended to solve the linear 

regression problem for some observed sample, it provides an opportunity to 

verify any method solution to the linear regression problem under 

multicollinearity.  

With this simulation method in hand, the author has demonstrated in the 

paper a practical unbiasedness of the MOLS and its very small variability in 

solving the linear regression problems under near-collinearity of any level. 

The mentioned simulation method (ADP) allows demonstrating the high 

proximity of the MOLS solutions to the solution in the population, which we 

estimate as the OLS solution for a very large sample. As one can see from 

Table 1, an MOLS solution is very close to the population solution even for a 

very small sample size.  

In general, the ADP has made it possible to affirm that the developed  

MOLS method gives an adequate solution to the linear regression problem 

under near-collinearity and multicollinearity.  

Summarizing, the obtained results can be characterized as follows. 

 The notion of physically correct and physically incorrect codomain of any non-

singular matrix has been introduced and explained with the aid of this notion the 
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appearance of economically incorrect OLS-solutions in the presence of near-

collinearity. It was clarified that the incorrectness of the OLS solutions is a 

consequence of the exit of the OLS matrix equation’ RHS from the codomain of 

physical correctness due to random errors in the data and great variability of the 

OLS-solutions. 

The new method presented in the paper, that is the MOLS, is based on 

 the OLS matrix regularization, which enlarges the codomain of physical 

correctness and then diminished the probability of exit of the RHS from this 

codomain. More than that, the modified Cramer’s formulas give a more stable 

solution than the Gauss’ method. Both these factors lead to a more stable and 

economically adequate solution of the MOLS than the OLS. Relatively to the 

ridge-method, the MOLS is practically unbiased and does not need to optimize 

the regularization constant. These two advantages are decisive for practical 

applications. 

To shortcomings of the MOLS, one can attribute the intensive computer 

loading of the algorithm and possible OLS-like behavior of the solution for the 

MOLS method, as well as for the ridge-method, in a rare situation of a very large 

partial regression’ residual error of some regressors with the regressand. Such 

situation is observed, for instance, in the presence of non-linear regressors. 

 

References: 1. Seber, G.A.F. Linear Regression Analysis / G.A.F. Seber. – NY: 

Wiley-Blackwell, 1977. – 456 p. 2. Seber, G.A.F. Linear Regression Analysis, 

2nd edition / G.A.F. Seber,  A.J. Lee. –  NY: Wiley, 2003. – 341 p. 3. Spanos, 

A., Probability Theory and Statistical Inference: econometric modeling with 

observational data / A. Spanos. – Cambridge: Cambridge University Press, 

1999. – 401 p. 4. Gujarati, D. N. Basic econometrics / D. N. Gujarati. – NY: 

McGraw-Hill, 2002. – 526 p. 5. Wooldridge, J.M. Introductory Econometrics: 

Modern Approach, 5th ed. / J.M. Wooldridge. –  Ohio: South-Western, 2009. – 

633 p. 6. Badi Baltagi. Econometrics / Badi Baltagi. – NY: Springer, 2011. – 812 

p. 7. Greene, W.H. Econometric Analysis, 7th ed. / W.H. Greene,. – NY: 

Pearson. 2012. – 1211 p. 8. Draper, N. R. H. Applied Regression Analysis / N. 

R. Draper, H. Smith. – New York: Wiley. – 1966. – 445 p. 9. Farrar, D. 



25 

 

Multicollinearity in regression Analysis: The problem revisited / D. Farrar, R. R. 

Glauber //  Review of Economics and Statistics. –   1967. – 49. – P. 92-107.  10. 

Hoerl, A. E. Ridge regression: Biased estimation for nonorthogonal problems /  

A. E. Hoerl, R. W. Kennard // Technometrics. – 1970. – 12(1) . – P. 55–67.  11. 

Marquardt D.V. Generalized Inverses, Ridge Regression, Biased Linear 

Estimation, and Nonlinear Estimation / D.V. Marquardt // Technometrics. – 1970. 

– 12. – P. 591-612.  12. Blanchard O.J. Comment. / O.J. Blanchard // Journal of 

Business and Economic Statistics 5. – 1987. – P. 449–51. 13. Adkins L. C., 

Collinearity. Companion in Theoretical Econometrics, edited by Badi Baltagi /  L. 

C. Adkins, R. C. Hill. – Oxford: Blackwell Publishers, Ltd. – 2001. – pp. 256-278. 

14. Belsley D. A. Regression Diagnostics: Identifying Influential Data and 

Sources of Collinearity / D. A. Belsley, E. Kun, R. T. Welsh. – New York: Wiley. 

– 2004. – P. 651. 15. Belsley, D.A. Demeaning conditioning diagnostics through 

centering / D.A. Belsley // The American Statistician. –  1984. –38(2) . – P. 73-

77. 16. Rao, C. R. Linear Models: Least Squares and Alternatives, 2nd ed. / C. 

R. Rao, , H. Toutenberg. –  NY: Springer, 1999. –  P. 301. 17. Spanos, A. The 

Problem of Near-Multicollinearity Revisited: erratic vs. systematic volatility / A. 

Spanos, A. McGuirk // Journal of Econometrics. –  2002. –   108. –  P. 365-393. 

18. Kabanichin S. I. Definitions and Examples of Inverse and Ill-posed Problems 

/ S. I. Kabanichin // J. Inv. Ill-Posed Problems. –  2008. –  16. –  P. 317 – 357. 

19. Adkins L. C. Collinearity Diagnostics in gretl, Economics Working Paper 

Series 1506 /  M. S. Waters,  R. C. Hill. – Oklahoma:  Oklahoma State 

University, Department of Economics and Legal Studies in Business. – 2015. –

452 p. 20. Fox, J. Applied regression analysis, linear models, and related 

methods / J. Fox. – Thousand Oaks, CA: Sage Publications. – 1997. – 742 p. 

21. Cook, R.D. Comment on Demeaning Conditioning Diagnostics through 

Centering, by Belsley, D.A. / R.D. Cook // The American Statistician. – 1984. – 

38. –P. 78-79. 22. Maddalla G.S. Introduction to Economics / G.S. Maddalla. – 

New York: Macmillan, 1992. – 396 p. 23. Harvey, A.C. Some Comments on 

Multicollinearity in Regression /  A.C. Harvey // Applied Statistics. – 1977. – 

26(2). – P. 188-191. 24. Tikhonov A. N. On the stability of inverse problems /  A. 

N. Tikhonov // Doklady Acad. Sci. USSR. –  1943. – 39. – P.176–179. 25. 

https://ideas.repec.org/p/okl/wpaper/1506.html
https://ideas.repec.org/s/okl/wpaper.html
https://ideas.repec.org/s/okl/wpaper.html


26 

 

Tikhonov, A. N. Solutions of Ill-Posed Problems /  Tikhonov A. N., Arsenin, V. Y.  

– New York: Winston & Sons, 1977. – 287 p. 26. Dougherty C. Introduction to 

Econometrics / C. Dougherty. – NY: Oxford University Press, 1992. – 402 p. 

 

Appendix A  

 

 

Figure 1. At both figures the right-hand side vector b  is represented 

as the sum of two components, 1e  and 2e , in the basis 1 2( , )a a  of 

matrix columns. The bold lines limit from the outside the 2D region 

sD  of physical correctness in both directions from the origin. 1) The 

right-hand side b  belongs to the region of physical correctness. 

Both solutions have the same signs. 2) The right-hand side b  does 

not belong to sD . Both solutions, 1e  and 2e , become larger in value 

and have different signs.  

 

 


