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A NEW STABLE SOLUTION TO THE LINEAR REGRESSION PROBLEM
UNDER MULTICOLLINEARITY
Tyzhnenko A. G.

Abstract. The main shortcomings of the OLS solution to the linear regression
problem under multicollinearity, which prevent from obtaining an adequate
contribution of each regressor to the regressand, have been considered.

It is shown that the main cause of a common incorrectness regarding the
economic aspect of OLS solutions is their great variability in the presence of
data multicollinearity.

It is also shown that mathematically correct OLS-solutions can become
economically incorrect with data collinearity increasing which leads to a
diminishing of the physically correct codomain of the OLS-matrix.

Existing in the literature methods to overcome the OLS-solutions great
variability are considered both from economical and mathematical aspects. The
considering provided shows with confidence the impossibility of existing
methods to overcome the data multicollinearity problems both from
mathematical and economic considerations such as choosing the best
regressions, “lasso” and so on.

The detailed analysis of the situation with multicollinearity provided in the
paper allows concluding that the only way out of this situation is to create a new
method solution of the OLS-equation which should give a stable solution with
small variability, as in the ridge-method, and small bias. Precisely such method
is the Modified OLS (MOLS) which is proposed in the paper.

The MOLS is an approximate method which uses the known Tikhonov’s
regularization principle and a new method solution to the regularized OLS-
equation, which is based on the modified Cramer’s rule, which is proposed in
the paper.

It is shown that the MOLS method gives stable and practically unbiased

solution to the linear regression problem regardless of the near-collinearity level
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of the data used. Unlike the ridge-method, the MOLS method gives a negligible
bias and does not require the optimization of the regularization constant.

The proposed MOLS method is verified in the paper for adequacy with the
aid of the artificial data population (ADP), which is based on the Monte Carlo
simulation method. Using the ADP, the new MOLS method is checked for the
biasedness and stability for both small and large samples.

Key words: multicollinearity, stable solution, almost unbiasedness,
mathematical correctness, physical correctness, ridge-regression

HOBWUU METO[L, CTABINTIbHOIO PILLEHHA 3A0AMI NIHIKMHOI PEFPECII B
YMOBAX MYJNbTIKOJNNIHEAPHOCTI
TwxHeHko O. T.

AHoTauif. Po3rnsHyTO iCHytodi npobnemMn pilleHHs GaratodakTopHOI 3agadi
NiHINHOI perpecii 3a HasABHICTHO MYNbTUKOMIHEAPHOCTI METOOO0M HaMMEHLUUX
kBagpatie (MHK), ki He [03BONMATL OTpUMATU afeKBaTHE  pPilLEHHS
€KOHOMIYHOT NPO6sIEMUN OLIHKM BANUBY KOXXHOIO OKPEMOrO perpecopa Ha Biaryk.

BusBneHi npuymMHM MoABM HEKOPEKTHMX PilleHb €EKOHOMIYHOI 3ajadi
perpecil MareMaTU4HUM MeTOAOM HaMMeHLIMX KBajpaTiB, $SKi NoB’'d3aHi 3
Benukoto BapiabenbHicTio MHK-pileHHSA Npu 3HAYHOT KOSiHEAPHOCTI AaHWUX.

[MokaszaHo, L0 HEKOPEKTHI 3 TOYKMN 30pY EKOHOMIKM MaTeMaTUYHI pPilLeHHS
ctaHgapTHoro MHK BMHMKaOTb Npu 36inNbLUEHHI piBHS KOSliHEApHOCTI AaHuX 3a
paxyHOK 3MeHLeHHs1 obnacTi gisnyHol kopekTHocTi MHK-maTpuui.

Po3rnsiHyTO iCHyKOWi Ha CbOrofgeHHss MeToau MoAonaHHA  BESIUKOI
BapiabenbHocTi MHK-pilleHb $IK 3 €KOHOMIYHOI, TakK i 3 MaTeMaTU4HOI TOYKK
3opy. NpoBeneHnn posrnag 3 04eBUOHICTIO MOKa3ye HECNPOMOXHICTb iICHYHUMX
Ha CbOrofHi MeTOAiB NOoLOMaHHA NpobrnemMu MyrbTUKOMIHEApPHOCTI sk 3 BOKy



mMatemaTuuli, Tak i 3 OOKy €eKOHOMIYHOro po3rfsgy CnpoweHHs camol
€KOHOMIYHOT Npobnemu: BNBIp HanKpaLwumx perpecin, lasso i T1. i.

[MpoBeaeHn aHani3 4O3BOMMB 3pOOUTU BUCHOBOK, LLIO EAVNHUM BUXOLOM 3
ICHYIOMIM cUTyaUil € CTBOPEHHS HOBUX MeToaiB po3B’a3ky MHK-piBHSAHHS ski 6
AaBanu pilleHHsa 3 Manok BapiabenbHiCcTIo, K B ridge-meToai, Hanpuknag, ane
3 Manum 3MmiweHHaM. Came TakMm MeToAOM € HOBMM MoauikoBaHM MeTo[
HanmeHwwux kBagpatis (MMHK), akun € npeactaBneHm B poboTi.

MMHK € HabnumXeHuMm MeToaoM, B SKOMY € BUKOPUCTAHUM MEeTo[
perynapusauil TixoHoBa i HOBUW MeTOL pieHHA perynapusosaHoro MHK-
PIBHAHHA, 3acHoBaHMM Ha wmoaudpikoBaHoMy Metodi Kpamepa, akuu
3anponoHoBaH B CTaTTi.

MokaszaHo, wo MMHK pgae cTinke Ta NpakTUYHO HE3MIWEHE PillEHHS
3agadi NiHinHoI perpecii npn byab-aKoMy piBHI KoniHeapHOCTI AaHmx. Ha BigMiHy
Big MeTogy ridge-perpecii, MMHK He noTpebye onTumisauii KOHCTaHTK
perynapusauil.

3anpornoHoBaHu B poboti MMHK nepeBipaeTbCa Ha agekBaTHICTb 3a
AOMOMOroK LUTYYHOI reHeparnbHOI CYKYMHOCTI, sika CTBOPEHa 3a A0MOMOrow
meToay MoHTe-Kapno. 3 BUKOPUCTAHHAM L€l reHeparibHOI CYKYMNHOCTI B pOOOTi
nokasaHa K npaktmyHa HeamiweHictb MMHK, Tak i Bucoka ctabinbHIiCTb pilleHb
3agaui perpecii sk ans Benukux, Tak i 4ns manux snbipok.

KrnitouwoBi cnoBa: MynbTUKONIHEAPHICTb, cTabinbHe  pilleHHs, Manxe
He3MiLLEeHICTb, MaTeMaTUYHA KOPEKTHICTb, did3nYHa KOPEKTHICTb, PigX-perpecida

HOBUA METOO CTABUJIbHOIO PELLUEHUA 3AOAYN NIMHENHON
PErPECCUN B YCIOBUAX MYITbTUKONNMWHEAPHOCTHU
TbikHeHKko A. T.

AHHOTauuA. PaccmoTpeHb! cyLiecTByoLime npobnemsl peLleHns
MHOrodakTopHoOm 3agaun NUHENHON perpeccum B YyCNoBunAx
MYNbTUKONIMHEAPHOCTN METOLOM HanmeHblunx kBagpaTtos (MHK), koTopble He



MNO3BONSEIOT MOMyYNTb afeKkBaTHOE pelleHMe 3KOHOMUYECKOW npobnemsl
OLIEHKWN BIINAHUS KaXXO0ro oTAeNbHOro perpeccopa Ha OTKIUK.

BbisiBfieHbl NPUYMHBI HEKOPPEKTHOrO peLleHUsT 3KOHOMUYECKOW 3ajauu
perpeccun matemMaTM4eCKMM MEeTO4O0M HauMMEHbLUMX KBagpaToB. OTU MPUYMHLI
cBsA3aHbl ¢ 6onbwon BapuabenbHocTbto MHK-pelweHnin npn 3HaunTenbHoOm
KONMHEeapHOCTN AaHHbIX. [lokaszaHo, YTO HEKOPPEKTHble, C TOYKM 3pEeHUs
9KOHOMMKM, MaTemaTunyeckme peleHus crtaHgaptHoro MHK Bo3HukaloT npwu
yBENMYEHNN YPOBHS KONSIMHEAPHOCTU AaHHbIX 3a CYET yMeHblleHna obnactu
domsnyeckon koppekTHocTn MHK-maTpuubl.

PaccMOTpeHbI CyLLeCcTBYOLWNE HA CErogHALWHMA AeHb MeToabl 60pbbbl C
b6onbwon BapuabenbHocTblto MHK-peweHnn kak ¢ 3KOHOMWYECKOW, Tak U C
MaTeMaTU4YeCKON TOYeK 3peHus. [lpoBedeHHOe paccMoTpeHune ybeauTenbHO
nokasblBaeT HedeecnocobHOCTb CyLLECTBYIOWMX Ha CErogHAWHUM  OeHb
MeTOLO0B NPeoAoNeHNss MyJTbTUKONITMHEAPHOCTN KaK CO CTOPOHbI MaTeMaTUKMU,
TaK U CO CTOPOHbI 3KOHOMMYECKOrO pacCMOTPEHUS CNOCODOB YNPOLLEHUS cCaMOm
9KOHOMMYecKon nNpobriembl: BbIGOP HauMny4dWwmnx perpeccun, lasso, n 1.4.

[MpoBedeHHbIN aHanu3 nMo3BOSIFEeT cAenaTtb BbIBOL4 O TOM, 4TO
€ONHCTBEHHbLIM BbIXOAOM M3 CYLLECTBYHOLLEN CUTyauUn eCTb CO3[aHWe HOBbIX
meToaoB peweHuss MHK-ypaBHeHUs, koTopble AaBanu Obl pelleHust ¢ Manomu
BapnabenbHOCTbIO, KaK B ridge-metone, Hanpumep, HO C MasrbiM CMELLEHUNEM.
MMEeHHO Takum MeTooOM — SABMFETCA HOBbIM MOAUAOUUMPOBAHHLIM  METOon
HaumeHblwKnx kBagpatoB (MMHK), koTopbin npeacTaBneH B paboTe.

MMHK saBngetca npubnvXkeHHbIM MeTOOOM, B KOTOPOM WCMOSfb30BaH
MeTo[ perynapusauum TUXoHOBa W HOBbIN METOL peLleHuss perynsapusoBaHoro
MHK-ypaBHeHNA, OCHOBaHHbLIM Ha MoAuduuMpoBaHHOM MeToae Kpamepa,
KOTOPbI NPeanoXeH B CTaTbe.

MokasaHo, yTo MMHK pgaet yctonumBoe n npakTUyecku HecMelleHHoe
peleHne 3agadn NIMHENHOW perpeccum npu nobdom YypoBHE KOMSIMHEAPHOCTU
AaHHbIX. B otnuune ot metopa ridge-perpeccun, MMHK He Tpebyet
ONTMMMU3ALUMM KOHCTaHTbI perynspusaumn.

MpepnoxeHHbin B pabote MMHK, npoBepsieTcs Ha agekBaTHOCTb C

MOMOLLLbIO UCKYCCTBEHHOW reHeparbHOM COBOKYMNMHOCTU, CO34aHHONM C NMOMOLLIbHO
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metoaa MoHTte-Kapno. C ncnonb3oBaHMeM 3TOW reHeparibHOM COBOKYMHOCTU, B
paboTe nokasaHa Kak rnpaktundeckas HecmelweHHocTb MMHK, Tak u Bblcokas
CTabuNbHOCTb peLLUeHNn 3adavn NMMHEMHOW perpeccun, Kak ans 6onblmnx, Tak n
OS5 ManbiX BbIOOPOK.

KnioueBble cnoBa: MyNbTUKONIIMHEAPHOCTb, CTAOWNbHOE  pelleHue,
NnpakTMyeckasl HeCMeLLEHHOCTb, MaTemMaTuyeckasi KOPPEKTHOCTb, husnyeckas
KOPPEKTHOCTb, PUMXK-PErpeccus

Preamble

An economic insight into the multiple linear regression solutions can be
figured out as the obtaining of significant estimates of regression coefficients
that represent the mean change in the response variable for the unit changing in
the predictor variable while holding other predictors in the model constant.

It is clear from the economical point of view that the mathematical solution
to the linear regression problem must be stable and the regression coefficients
obtained must have the same signs that the partial regression coefficients
between the regressand and regressors have. It is known that this is frequently
not the case if the regression problem is solved with the aid of the common OLS
method. In this paper a new method solution to the linear regression problem is
proposed in which a common great instability of the OLS is overcome.

This problem is considered in the paper under the following assumptions:
the residual error is normal, e~N(0, al); the relationships between variables are
linear in the population; all assumptions of the Gauss-Markov theorem are
fulfilled; non-stochastic regressors are considered.

From a mathematical point of view, the linear regression problem is
formulated as the curve fitting problem [1-7]. The OLS method of solving the
linear regression problem can give an adequate solution of economic regression
problem if the regressors are near-orthogonal. Unfortunately, this is not the case
in practice.

The main drawback that prevents the OLS solution from being adequate to
an economic problem is the near-collinearity of regressors [8-19].



In terms of just a curve fitting problem, the OLS always gives
mathematically correct result regardless of the regressors’ collinearity level (the
VIF-factor, for example). However, with the VIF-factor increasing, the variability
of the OLS-solution drastically increases for not very large samples. This issue
prevents from getting an adequate economic solution to the regression problem
in practice.

The data near-collinearity is not the single source of the regression
solution errors. Another source of errors is the non-linearity of the population
that is investigated. This problem concerns the regression model inadequacy
and may, in principle, be eliminated with the aid of appropriate data
transformations.

Very important source of errors in regression solutions is the wrong model
specification [9, 12], but this problem is connected with economic considerations
and is not considered in this paper.

Different remedies have been proposed to dealing with ill-conditioning and
near-collinearity including regularization and ridge regression, omitting variables,
grouping variables in blocks, collecting additional data and so on; among others
see [4, 9 - 21].

However, these remedies may be time-consuming, costly, impossible to
achieve or controversial [22]. Also, the diagnostic tools that signal the presence
of near-collinearity are crucial. More than that, the author agrees with [23] that
any signal of multicollinearity does not exist at all because “multicollinearity is a
matter of degree rather than one of kind.”

Despite the theoretical warnings about the inadmissibility of using OLS in
the presence of near-collinearity of any level, this technique is still in use in
practice, in economic and other studies, with attempts to reduce somehow the
level of collinearity. Many years of efforts did not yield any results in the search
for a critical level of near-collinearity. It seems that A. C. Harvey in [23] was right
that there is no such a critical level at all and the influence of near-collinearity at
any OLS solution is a continuous process which depends on many parameters.
This issue is also confirmed by the following further considerations of OLS-
solutions properties.



In reality, with a sample size decreasing, the presence of the data near-
collinearity usually leads to an unacceptable increase in the OLS estimates
dispersion which makes the OLS solution inadequate in terms of economic
content. For instance, signs of the OLS estimates may be incompatible with their
economic meanings.

Such a behavior of OLS-solutions immediately follows from the Cramer's
rule and the determinant decomposition by matrix eigenvalues. The presence of
small eigenvalues in the numerator and the denominator of the Cramer's
formula can lead to significant changes in the solution due to random changes in
the data observed and then in eigenvalues.

As for the appearance of incorrect signs in the OLS solutions, that is when
solutions have no economic (in general, physical) sense, this phenomenon, as
shown in the paper, is connected with the fundamental property of nonsingular
square matrices.

It has been revealed that any non-singular matrix operator has a codomain
that consists of two parts, which we called codomains of physical correctness
(D) and incorrectness (D€) of the corresponding matrix equation solution.

That is, any matrix equation Ax = b always has a mathematically correct
solution but such a solution may be either physically correct or physically
incorrect. A solution is physically correct if it has an economic (a physical)
meaning. The solution of the same equation is physically incorrect if its solution
has no physical meaning. In the latter case, the solution necessarily changes
the signs of some solution components. This issue depends on the RHS (b)
only. That is, a solution of the matrix equation Ax = b is physically correct if
b € D¢ and is incorrect otherwise.

It has been shown in this paper that this effect holds for any matrix
equation with square non-singular matrix. However, with the matrix conditional
number increasing, the codomain of physical correctness, D¢, is becoming more
narrow. This issue may lead to the RHS of matrix equation being outside of D¢
due to random errors in matrix elements. If it is the case, there will be a change
in signs of the solution components. This issue is often observed in OLS
solutions to the regression problem due to their large variability.



Thus, the main drawback of the OLS method is a narrow codomain of
physical correctness in presence of near-collinearity and the high variability of a
solution in the case when an observed sample size is not very large. Both these
effects promote the exit of the RHS from the D¢ under the influence of random
errors. This one does not allow finding the suitable estimates of regression
coefficients in the population.

The advantage of the OLS is the unbiasedness and consistency of a
solution and its variance, i.e. a reduction of the sample regression coefficients
variance with a sample size increasing and the approach of the mean value of
the OLS solutions to the regression coefficients in the population, which makes
it possible, in general, to estimate, with the aid of data modeling, the adequacy
of the regression problem solution when this problem is solved by any other
method.

Thus, due to the properties of OLS-solutions which are proved
theoretically, one can test, in principle, the regression problem solution results
obtained by other methods for which the closeness of the estimated coefficients
to the population ones cannot be proved theoretically.

As to the influence of near-collinearity on the variability of the OLS
solutions, the prior investigations unambiguously show the need to create new
methods solution the linear regression problem, which would give a small bias
and acceptable solution variability for not very large samples.

Any new method solution to the linear regression problem should give the
regression coefficients which have to approach in probability the coefficients of
the OLS solution when sample size increases unlimitedly. This issue is a
consequence of OLS solutions unbiasedness and consistency, which allows us
to test a new method with the aid of data simulation.

The unbiasedness and consistency of OLS solutions is also manifested in
the fact that the mean of many times (M > 1) repeated OLS-solutions for
samples of limited size (n) drawn from a population converges in probability to
the population solution (regression coefficients) with M increasing. This one is
also used in the paper for testing new methods solution to the linear regression



problem with the aid of the artificial population (ADP) worked out in the paper for
this purpose.

In this paper, a new method (MOLS) is proposed which produces stable
solutions with a negligibly small bias to the linear regression problem under
near-collinearity of any level for samples of any size.

The MOLS is based on the OLS for standardized variables with some
modifications. The OLS matrix equation X'Xb =X'Y is replaced by the
regularized equation (X'X + al)b = X'Y with very small regularization constant
a = 0.001. This equation is solved further with the aid of modified Cramer’s rule
which is suggested in the paper.

Unlike the ridge regression, the modified OLS (MOLS) method gives
practically zero bias and does not require the regularization constant (a)
adjustment for any collinearity level.

To disadvantages of the MOLS can be attributed a large computer loading
that prevents applying this method for a large number of regressors (more than
200-300).

The new method’ (MOLS) adequacy has been verified with the aid of a
special Artificial Data Population (ADP) developed in the paper. The linear
regression problem modeling with such a population differs from the standard
one [26] in that it does not use a priori giving regression coefficients in a
population. Instead of this, the ADP method simulates a population with
unknown regression coefficients which values can be precisely estimated by the
OLS solution for a very large sample size, using its consistency property.

The essence of the ADP method checking for adequacy consists of a priori
giving a regressand vector Y and setting the regressor vectors {X;} geometrically
with given angles to the regressand vector. With the angle between regressor
and regressand vectors diminishing, the absolute value of the corresponding
regressor’ coefficient should increase. If two regressors, for instance, have the
same angle to the regressand, the corresponding regression coefficients in the
population should be equal. If two regressor vectors have angles with



regressand vector which differ by m/2, their regression coefficients should have
opposite signs and be equal in absolute value.

Then, with such an artificial population in hand, one can construct various
situations for the population regression coefficients which allow estimating the
adequacy of a new method solution to the linear regression problem. For each
modeled situation with population regression coefficients, one has an
opportunity for estimating the population regression coefficients with the aid of
the asymptotic OLS solution. This one allows estimating both the biasedness
and variability of any new linear regression solution method for any sample size.

Creating a new method data simulation (ADP) for testing the linear
regression problem solutions is connected with the incorrectness of the
conventional simulation method [26] for multiple regression in which for a priori
given regressors, {X;},,, and population regression coefficients, {b;},,, one sets
many times (M) a random residual error, {e},, for calculating M regressand
realizations, {Y},,.

The matter is that the given regressors, {X;},,, defines exactly the OLS-

matrix X'X of the matrix equation X'X b = X'Y, which has a definite codomain of
physically correctness, D€. In order to make this matrix equation have a correct
solution, the RHS X'Y should belong to this D¢. If we set the population
regression coefficients arbitrarily, we make the regressand Y arbitrary as well
and so the RHS X'Y. A such calculated RHS may not belong to this D€. This one
will lead to a physically incorrect solution to the linear regression problem. The
situation may change only if we take as a priori regression coefficients those
ones which are close to the population coefficients. However, it is not probable
to guess randomly the regression coefficients which are close to the true ones.

It is worth noting again that the developed ADP permits us not only to test
the biasedness of a new method solution to the linear regression problem but
also to estimate the variability of sample regression coefficients. For this one,
we can draw from the ADP a large series of replicas with a given size and
calculate the standard deviation of regression coefficients obtained by the OLS
and the new method.
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From a mathematical point of view, the solution of the equation Ax = b is a
vector x that gives a zero discrepancy: |l Ax — b l|l= 0. Herewith, not raised the
guestion of what a real problem is solved. It is revealed in this paper that such a
situation is not always admissible. This is the case, for instance, in the basis
changing problem in a vector space.

In most real problems connected with the equation Ax = b one has to
consider the context of the problem. It has been revealed that a common
condition of zero discrepancy does not indicate the correctness of a real
problem solution.

Codomain of physical correctness

Definition: any n-dimensional nonsingular square matrix A over the reals
has the R™ as its codomain which consists of two parts, D¢ and D¢ (D€ U D¢ =
R™), where D¢ is a codomain of physically correct solution of matrix equation
Ax = b (b € D) and D¢ is a codomain of physically incorrect solution of matrix
equation Ax = b (b € D°).

If b € D¢, the signs of exact solution components of the equation Ax = b
are consistent with the signs needed for the real problem which is investigated
and the solution is stable for any condition number of matrix A if the random
errors of matrix elements do not remove the RHS vector b from D€.

Otherwise, if b € D¢, the signs of exact solution components of the
equation Ax = b are not consistent with the signs needed for the real problem
that is investigated with this equation.

In general, the exact solution of equation Ax = b changes the signs of
some solution components when vector b passes from D¢ to D°. The absolute
values of solution components depend on the orientation of the RHS vector and
increase with the matrix A condition number increasing if b € D°.

Both these issues are inappropriate for a real problem that is investigated.
More than that, if b € D¢, the exact solution of equation Ax=b is unstable in the
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ill-conditioning case, cond(A) > 1. Geometrically this one follows from projection
properties. If a RHS is outside of D¢, projections of the RHS on the bases
vectors increase with the RHS moves away from D¢. The more is the condition
number of the matrix, the narrower is D¢. This one enlarges the projection
values and, consequently, the absolute values of solution components.

Because of the linear regression problem OLS-solutions are based on the
matrix equation solution, in the case of near-collinearity, such solutions may
reveal both the appearance of unexpected signs of the regression coefficients
and their abnormal absolute values.

The first problem is connected with the exit of the OLS-equation RHS from
the codomain of physical correctness (D€) due to random errors in observed
data.

The second problem relates geometrically to narrow D¢ and
mathematically to a small determinant of the OLS-matrix in presence of random
errors in matrix elements.

Geometrical considerations to system solution in 2D

Consider the first problem of unexpected signs of the regression

coefficients using the example of two-dimensional full rank matrix equation:

Ax =b & a;x, + ayx, = b, (1)

oim ()= (2.0 = 2

From geometrical point of view, equation (1) is the coordinate-wise
representation of the vector b with respect to the basis {a,,a,} .
Suppose the angle between the basis vectors a; and a, is significantly

where

smaller than 90°; vector b is located between them; all vectors belong to the 1%
quadrant (Fig. 1(1), Appendix A).

Let a small 2D area between vectors (a,, a,) and (—a,, —a,) be the matrix
A codomain of physical correctness, D¢ (Fig. 1(1)). The vectors e; and e, in Fig.

1(1) are the projects of vector b on basis vectors a, and a,. From this drawing
12



we can see that in this case both equation (1) solution components are positive
(x1 = leq|, x, = |e,]). Seemingly, if for the same basis vectors the RHS has the
inverse direction (—b) and is located between —a, and —a, vectors, both
solution components are negative. In both this cases the solutions components
have the same signs.

Another situation is shown in Fig. 1(2), where the RHS vector b is located
between vectors —a; and a, (in the wide 2D area that we denoted as D¢ ). In
this case the solution components have different signs, (a; = —|eq|, a, = |e,]).
Analogous situation will be if the only basis vector a, changes the direction.

This simple example demonstrates the fundamental property of non-
singular matrices: a matrix equation Ax =b has fundamentally different
solutions for b € D¢ and b € D°. If € D¢ , the solution of this equation is
mathematically correct, but has no physical meaning. Which part of the whole
codomain (R™) is D¢ should be determined from economic considerations. Worth
noting, that this property is not connected with the conditioning of matrix
equation.

Summarizing, we can state that any determined matrix equation Ax = b
has both physically correct and physically incorrect solutions depending on the
RHS. In both cases solutions are mathematically correct.

Let us demonstrate the existence of the fundamental property of non-
singular matrices using the example of a simple economic problem.

2D selling problem

Suppose you are selling hot dogs and sodas. Each hot dog costs $1.50
and each soda costs $0.50. At the end of the session you made a total of
$78.50. You sold a total of 87 hot dogs and sodas combined. You must report
the number of hot dogs sold and the number of sodas sold. How many hot dogs
and sodas were sold separately? Shortly: one hot dog costs $1.5; one soda
costs $0.5. A common sale $78.5. A common number of units sold is 87. How
many hot dogs (x,) and sodas (x,) ware sold separately? System (Ax = b):

{1.5x1 + 0.5x, = 785 2)
x1 + xz == 87 '
13



Here, det(A)=1; cond(A)=4.27. The system (2) is well-conditioned. The Gauss’
solution in the Matlab is: x = A\b = (35;52). The basis vectors have the
following coordinates: a =(1.51),a, =(0.5;1). Let us write down the RHS as

follows: b = 87(0.9023;1). Then, it is clear that the RHS vector lies between a,
and a, and belongs to the codomain of physical correctness, D¢, since there
projections on a; and a, are positive as it should be from economic
considerations.

Let us consider further the system (2) solution behavior with the RHS
vector b changing if the common sale is fixed, b(1) = $78.5.

The marginal values of the RHS vector b inside the D¢ can be determined
from the parallel conditions: b||a, and b||a,. That are: b, = (78.5;157),b_ =
(78.5;52.3). According to the economic meaning of the problem, we take
b_(2) = 53. So, the common number of units sold can vary within [53; 157] in
order to b € D°.

If b = (78.5;53), the solution is x = (52;1). This means that 52 hot-dogs
and one soda was sold. If b = (78.5;157), the solution is x = (0;157). This
means that no hot-dogs but 157 sodas ware sold. It is clear, that inside D¢ there
are also other RHSs that give the whole solutions. For example, for b =
(78.5; 109) we have the solution: x = (24; 109).

In any other practical situation, one can also sell a part of the unit and then
the solutions do not have to be whole numbers. In general case, we can find a
solution of such an equation in real numbers.

Suppose the right-hand side vector b does not belong to the D€. It is the
case if b(2) <52.3 or b(2) > 157. For example, let the common number of
units sold is b(2) =51. Then the solution is x = (53; —2). This solution is
incorrect relative to the investigated problem. Suppose now that b(2) = 159.
Then, x = (—1; 160) and is also incorrect. This means we cannot set arbitrary
the RHS of equation (1) if we investigate any practical problem. If we do that we
can obtain a solution with wrong signs despite the fact that the system is well
conditioned.
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This example demonstrates an important property of a linear system
solution regarding of its adequacy to the economic problem which is
investigated with the aid of such system. If the RHS of a system does not belong
to this system' matrix codomain of physical correctness, a mathematically
correct solution to this system will be not correct for the practical problem under
investigation.

Because of a linear system solution necessarily changes the signs of
some solution components when the RHS passes from one codomain to
another one, the codomain of physical correctness can be easily determined if a
practitioner knows exactly what signs of solution components are correct. This is
the case for the regression problem, for example, in which one knows that the
regression coefficients must have the same signs as the correspondent partial
regression coefficients for the regressand and regressors.

The problem of physical correctness in linear regression

There is no consensus in the economic literature on the discussion of the
OLS-solution properties. As an aside, the matrix equation Ax = b with a non-
singular square matrix A should always have a unique solution for any b € R"
from mathematical point of view. As another aside, it is clear that for ill-
conditioned matrices (A) the matrix equation (Ax = b) solution may be not
always true from the point of view of the applied problem that is investigated.

This situation was characterized by [12] as follows: “Multicollinearity is
God’s will, not a problem with OLS or statistical technique in general.” “Only use
of more economic theory in the form of additional restrictions may help alleviate
the multicollinearity problem.” “One should not, however, expect miracles;
multicollinearity is likely to prevent the data to speak loudly on some issues,
even when all of the resources of economic theory have been exhausted.”

Denoted by [12] such a situation with multicollinearity has not changed to
date [4, 5, 6, 19, 22], as far as the authors know.

As we can see from the above, the OLS solution problems under
multicollinearity are connected with the ill-conditioning of OLS matrix equation
Ax = b, which matrix, as any non-singular matrix, has its codomains of physical

correctness (D¢) and incorrectness (D€). The increasing of near-collinearity level
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in data leads to increasing the condition number of the OLS-matrix and then to a
contraction of the physical correctness (D€) codomain. Besides that, the
increasing of ill-conditioning level leads to increase variability of OLS-solutions
due to decreasing of the OLS-matrix minimal singular number. Both these
issues can drastically spoil the OLS solution to the linear regression problem:
the regression coefficients may be too large in values and become of wrong
signs if the errors in data remove the RHS of matrix equation from the physical
correctness (D¢) codomain, which has become too narrow.

In general, the instability of the OLS solutions to the linear regression
problem depends on two parameters only: the VIF-factor and the sample size.
With the VIF-factor increasing, the volatility of the OLS solutions increases. With
the sample size increasing, the volatility of the OLS solutions decreases. For
any value of the VIF-factor one can find such a large sample size that for any
sample, the RHS of the OLS matrix equation will belong to the physical
correctness codomain (D¢) and the OLS solution will be stable and
economically correct. For small and not very large samples this is not the case,
as arule.

It is also worth to note that a physically correct and stable OLS solution
may have yet sufficiently large standard deviation, because it is desirable to
estimate the standard deviation of the obtained solution by the Monte Carlo
simulation. The method of such a kind is proposed in this paper.

Summarizing, we can state that the only fruitful strategy of struggle with
the near-collinearity in the linear regression problem is the construction of new
methods solution to this problem which would provide stable physically correct
solutions with standard deviations much less than the absolute values of
solution components (regression coefficients). Besides that, such methods
would be negligibly biased. Such a method is proposed in the paper.

Modified OLS method

For obtaining a stable solution to the linear regression problem in the
standardized form, we propose here the modified OLS (MOLS) that used the
modified Cramer’s rule, which has been invented in the paper, instead of the

Gauss’ method solution to algebraic systems.
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The MOLS is based on the OLS for standardized variables with some
modification: the OLS matrix equation

X'Xb =X'Y (3)
is multiplied by (X'X)’ and replaced by the regularized equation
(X'X)'(X'X) + al)b = (X'X)'X'Y (4)
with small @ (@ = 0.001). This equation is solved further with the aid of the
modified Cramer’s rule.

The modified Cramer’s rule is intended to solve the definite ill-conditioned
systems X'Xb = X'Y that arise in the standardized linear regression problems
(all variables are standardized). For brevity, let us wright down this system as
usual:

Ax = b, (5)
with A = X'X, x = b, b = X'Y. Multiply further (5) by A":
A'Ax = A'b.
Let us denote further: A’A = H,, A'b = b, and solve the equation
Hlx == bl' (6)
Taking into account a possible ill-conditioning of the matrix H,, let us reduce the
conditioning level by adding a regularizer to H,. A new matrix let us designate by

H:

H = H, + aE,
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where E is the identity matrix and 0 < a < 1 (optimal value that gives a minimal
RSS is a = 0.001). Let us replace the equation (6) by a regularized equation
(basic and single approximation):

Hx = b,. (7)

According to the Cramer’s rule, the solution of this equation can be written as

A

where
8= T3t (=1 By (k) det (H(ti, 1)) ©)
A= $Rq (1) PH (k, f)det(H (6, 1)) (10)

and t, = 1,2,..,k— 1,k + 1, ...,n. Here, H(t, t;) is the matrix H, from which the
k-th row and j-th column are crossed out, H(k, j) is the (k, j) element of matrix H.
That is, the formulas (8-10) figure out as the common Cramer’s rule, in which
the Laplace’ formula is used.

In (8) we always can multiply the numerator and denominator by any
determinant of some nonsingular matrix. As such a matrix we take Hj‘1 — the
inverse of the matrix H;, where H; is the matrix H, from which the j-th row and j-
th column are crossed out. For each j we multiply the numerator and
denominator in (8) by different determinant det(Hj‘l). Using the determinant

property:
det(AB) = det(A) det(B),

we can write down the determinants (9, 10) as follows:
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~

A= ¥7_,(~1)/**B, (k) det (Hj_lH(tk, tj)) (11)

B= Y3, (~ 1)/ H(k, j)det(H " H (b, 1)) | (12)

without changing in solution (8) to the equation (7). Then, the approximate
solution to the equation (3) we can record as follows:

As our investigations have shown, such a simple transformation leads to
substantial stabilization of solution to the linear regression problem under near-
collinearity, if we choose the regularization constant as a = 0.001 (MOLS
method). Regardless of the collinearity level, the solution (13) gives practically
unbiased solution using the MOLS in the linear regression problem and
practically the same small variance of the regression coefficients as in the
correspondent ridge regression solution with regularization constant A = 0.5.

To the disadvantages of the MOLS one can attribute high complexity of
calculations. This one prevents from using this method for big data analysis with
number of regressors larger than 200-300.

It should be noted that the modified Cramer’s rule outlined above should
not be used for solving common ill-conditioned linear systems of large size. For
common systems this method is subject to accumulation of computational errors
while computing the determinants.

In standardized regression problems the computational errors are mutually
neutralized due to data centering. This issue makes it possible to solve the
linear systems with sufficient accuracy up to the order of 200-300 (regressors).

Worth noting, that both the MOLS and ridge-regression are approximate
methods of stabilization of the OLS under near-collinearity. Both methods use
the same idea of regularization of the ill-conditioned OLS matrix equation with
the aid of replacement of the original matrix (A) by the one that is close to it
(A + al) [24, 25] and [10]. However, the difference between the MOLS and

19



Ridge methods is that in the MOLS a neutralization of ill-conditioning is used
with the aid of multiplication of the matrix H(ty,t;) by the inverse matrix Hj‘1 in

(11, 12). Such neutralization drastically improves the situation with ill-
conditioning for a very small regularization constant (« = 0.001) and reduces
significantly the dependence of the solution on this constant. The latter one
allows us not to search for the optimal value of this constant. In all cases one
can use the only constant value of a = 0.001. That one allows obtaining in all
cases practically the same RSS for the MOLS as for the OLS.

The disadvantage of the MOLS, as well as of the ridge-regression, is the
lack of the ability to estimate theoretically the variance of the regression
coefficients obtained with the aid of the observed sample.

Then, for any new method solution to the linear regression problem, we
have to estimate both the biasedness of a solution and its variance. Let us
consider these issues with the aid of the Monte Carlo simulation method.

Artificial data population

To test any new method solution to the linear regression problem for
adequacy, we use in this paper the artificial data population (ADP)
reconstruction. Such a population has given parameters of contained variables
but a priori unknown regression coefficients. All variables of this population have
linear relationships between themselves and are normal. The last condition is
optional.

From such a population one can draw samples of any size. Very large
samples from this population allow us to estimate the regression coefficients in
the population with a priori given accuracy due to the unbiasedness and
consistency of OLS solutions. In turn, the knowing of the population regression
coefficients allow us to estimate the biasness of a new method solution (using
very large samples) and variances of its sample regression coefficients (using
multiple drawing of samples of the given size).

Consider the creation of an artificial population mentioned above. At first,
let us set a priory any regressand Y and auxiliary vector T =Y + a randn, where
randn~N(0,1) is a standard normal vector of size Y taken from the MATLAB
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pseudo-random generator and a« — a constant which a priori sets the near-
collinearity level. Regressors {X;} are constructed with the aid of the auxiliary
vector T: X; = k;T, where k; = tan(e;) and q; is the angle between Y and X;
vectors. With diminishing of a;, the mean influence of X; on Y increases as the
projection of a unit increment along the trend and that, the correspondent
regression coefficient b; in the modeled population increases also. For
modeling stochastic regressors, the pseudo-random function randn restarts for
each replica.

This method makes it possible to create a population, in which all
regression coefficients are the same, for instance, or these ones are decreasing
(increasing) in a given manner, or these are having the given signs. These
issues allow one to test a new method solution to the linear regression problem
for adequacy.

The data simulated with this method have been denoted as DSm(n, a),
where m is the number of regressors, n is the sample size and a sets the near-
collinearity level. To this notation, we should add a set of angles {a;} which sets
the regression coefficient values in the artificial population DSm(n, @).

The modified OLS method testing

Let us consider the artificial population DS5(n, 0.01) with the set of angles
{a;} = {5,5,40,60,80} for demonstrating the stability and small biasedness of the
modified OLS (MOLS) method. With this set of angles {a;}, the first two
regression coefficients in the population should be equal and much more in
value than the others. Other coefficients are descending in magnitude. All
coefficients have to be positive.

Table 1. OLS, MOLS and Ridge solution means and theirs standard deviations via sample size n
under severe near-collinearity (¢ = 0.01, VIF = 57107).

Method n ‘ b, ‘ b, ‘ b, bs b, bs
Single sample solutions

OoLS 10 -0.0099 5.9015 6.4643 -0.4212 -0.0539 | 0.0644
MOLS 10 -0.0124 2.2868 2.2910 0.2350 0.1153 0.0353
Ridge 10 1.3452 2.0815 2.0791 0.2168 0.1050 0.0320
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OoLS 10000 -0.0004 2.2853 2.2859 0.2428 0.1238 0.0346
MOLS 10000 0.0002 2.2862 2.2859 0.2384 0.1155 0.0353
Ridge 10000 1.3671 2.0785 2.0785 0.2167 0.1050 0.0321
Mean regression coefficients (10* sample replics)

oLS 10 0.0002 2.3190 2.3217 0.2346 0.1129 0.0356
MOLS 10 0.0008 2.2858 2.2859 0.2383 0.1155 0.0353
Ridge 10 1.3642 2.0781 2.0782 0.2167 0.1050 0.0321
oLS 10000 0.0001 2.2860 2.2864 0.2386 0.1154 0.0352
MOLS 10000 0.0007 2.2859 2.2859 0.2383 0.1155 0.0353
Ridge 10000 1.3637 2.0782 2.0782 0.2167 0.1050 0.0321
Standard deviations of regression coefficients (10* sample replics)

OoLS 10 0.0202 2.7236 2.7046 0.2757 0.1384 0.0411
MOLS 10 0.0129 0.0043 0.0044 0.0005 0.0002 0.0001
Ridge 10 0.0059 0.0039 0.0040 0.0004 0.0002 0.0001
OoLS 10000 0.0011 0.1455 0.1465 0.0152 0.0073 0.0022
MOLS 10000 0.0059 0.0003 0.0003 0.0000 0.0000 0.0000
Ridge 10000 0.0059 0.0003 0.0003 0.0000 0.0000 0.0000

With the sample size (n) increasing the MOLS solution should approach in
probability to the OLS solution mean if it is almost unbiased. Exactly this issue
one can see in the Table 1 for n = 10000 for a single sample solution. We also
see that in population b; = b, and the other coefficients are decreasing in value.
As the estimates of the population coefficients we can take the mean OLS
solution for n =100000: b; = b, = 2.2860; b; = 0.2386; b, = 0.1154; bs =
0.0352. If we look at the single MOLS-solution for n = 10 in the Table 1, we can
see practically the same values for regression coefficients as that for the OLS
with n = 100000. The same thing can be seen for the ridge-method (1 = 0.5),
except for being a bias.

Solution’ standard deviations for both MOLS and Ridge methods are equal
and drastically smaller than those of the OLS method. So, this comparison
confirms the stability and small bias of MOLS solutions, and demonstrates a
possibility of finding a correct solution to the linear regression problem both for
small and large samples.

As for the ridge-method, we use only one value of the regularization
constant, A = 0.5, for all calculations in this paper, that gives the most stable
solution with not very large bias as we can see in Table 1. More than that, as a
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rule of thumb one can obtain practically unbiased ridge-solution with this A, if
she or he multiplies all single sample ridge-solution components (except for by)
by the number 1.1. This one we can see in Table 1 if we multiply the ridge
solution by the value of 1.1 for both n =10 and n = 10000.This rule has
produced an excellent result in all our investigations but it requires confirmation
on a larger database.

It is worth noting that the considered simulation procedure allows also
demonstrating the confidence intervals diminishing for the MOLS method
compared to the OLS one. One can also verify the significance of sample
regression coefficients by the proposed simulation method with the aid of the z-
test considering that she or he knows precisely the correspondent variances of
the sample regression coefficients.

In general, the developed simulation method allows comparing the
common OLS with the new MOLS method for demonstrating the advantages of
the latter. Although this simulation method is not intended to solve the linear
regression problem for some observed sample, it provides an opportunity to
verify any method solution to the linear regression problem under
multicollinearity.

With this simulation method in hand, the author has demonstrated in the
paper a practical unbiasedness of the MOLS and its very small variability in
solving the linear regression problems under near-collinearity of any level.

The mentioned simulation method (ADP) allows demonstrating the high
proximity of the MOLS solutions to the solution in the population, which we
estimate as the OLS solution for a very large sample. As one can see from
Table 1, an MOLS solution is very close to the population solution even for a
very small sample size.

In general, the ADP has made it possible to affirm that the developed
MOLS method gives an adequate solution to the linear regression problem
under near-collinearity and multicollinearity.

Summarizing, the obtained results can be characterized as follows.

The notion of physically correct and physically incorrect codomain of any non-

singular matrix has been introduced and explained with the aid of this notion the
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appearance of economically incorrect OLS-solutions in the presence of near-
collinearity. It was clarified that the incorrectness of the OLS solutions is a
consequence of the exit of the OLS matrix equation’ RHS from the codomain of
physical correctness due to random errors in the data and great variability of the
OLS-solutions.

The new method presented in the paper, that is the MOLS, is based on
the OLS matrix regularization, which enlarges the codomain of physical
correctness and then diminished the probability of exit of the RHS from this
codomain. More than that, the modified Cramer’'s formulas give a more stable
solution than the Gauss’ method. Both these factors lead to a more stable and
economically adequate solution of the MOLS than the OLS. Relatively to the
ridge-method, the MOLS is practically unbiased and does not need to optimize
the regularization constant. These two advantages are decisive for practical
applications.

To shortcomings of the MOLS, one can attribute the intensive computer
loading of the algorithm and possible OLS-like behavior of the solution for the
MOLS method, as well as for the ridge-method, in a rare situation of a very large
partial regression’ residual error of some regressors with the regressand. Such
situation is observed, for instance, in the presence of non-linear regressors.
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Appendix A

s 1) b belongs to the region of physical correctness

Figure 1. At both figures the right-hand side vector b is represented
as the sum of two components, e, and e,, in the basis (a,,a,) of
matrix columns. The bold lines limit from the outside the 2D region

D*® of physical correctness in both directions from the origin. 1) The
right-hand side b belongs to the region of physical correctness.
Both solutions have the same signs. 2) The right-hand side b does

not belong to D°. Both solutions, e, and e,, become larger in value

and have different signs.
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