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Abstract. One of the important aspects of the efficiency of modern distributed 
networks built using blockchain technologies is the study of the security of con-
sensus protocols. In particular, the most common cryptocurrencies and block-
chain systems with probabilistic consensus protocols are subjects to so-called 
double-spending attack. The basis of such an attack is the use of the attacker's 
computing capabilities to form alternative blockchains. If the generated se-
quence is longer than the public chain of blocks, the attacker can present it as 
the proof of work and thus disrupt the correct functioning of the network. In this 
article we explore the probability of a successful double-spending attack, derive 
formulas for evaluating the corresponding events, consisting of the formation 
by the attacker of an alternative sequence of blocks. These formulas are ex-
tremely cumbersome and difficult to calculate. The paper proposes simplified 
analytical expressions to quickly assess the probability of a successful double-
spending attack. For this we use the extrapolation of intermediate calculations 
using the Lagrange interpolation formulas, as well as binomial approximation. 
The simulation results show that the use of simplified expressions allows us to 
provide acceptable accuracy of calculations. 
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1 Introduction 

Modern decentralized systems are a real alternative to the classical centralized ap-
proach in creating of complex information and telecommunication systems and net-
works [1-4]. For example, it is advisable to use decentralization in complex systems 
of corporate relations, in the provision of state and administrative functions, to build 
independent cryptocurrencies, as well as to create secure registers, cadastres, etc. [1-



3]. These and many other aspects show the clear advantage of decentralized systems 
built on blockchain technology [5, 6].  

At the same time, for the most developed and studied blockchain networks with 
probabilistic consensus protocols, there is a risk of a double-spending attack. The es-
sence of the attack is to use the features of consensus building protocols. For example, 
in the proof-of-work protocols, each record in the protected registry (each block of 
records) can be made only by the participant who was the first to solve the exhaustive 
task of finding the preimage of the cryptographic hash function. The block chain 
stores all the important records, and each following record (block of records) is con-
nected with the previous ones through a one-way hash function. This is a reliable and 
safe way to save critical data, protect it from falsification, alteration, intentional or 
accidental modification. At the same time, an attacker who has sufficient computing 
resources may try to form an alternative chain of blocks (with other records in previ-
ous blocks). This will give him the opportunity to disrupt the proper functioning of 
the blockchain network, for example, by spending the same assets twice (cryptocur-
rencies, tokens, etc.). The probability of such unauthorized interference is extremely 
small (with the small computing capabilities of an individual attacker it is almost im-
possible). However, when building a critical information infrastructure, an extremely 
important aspect is the assessment of various risks and threats to information security, 
including the probabilities of successful implementation of various attacks. Therefore, 
assessing the security of blockchain systems and, in particular, assessing the likeli-
hood of a successful implementation of a double-spending attack in systems with 
probabilistic consensus protocols, is an urgent and practically important scientific 
task. 

In this article, we consider consensus protocols with probabilistic completion (such 
as proof-of-work), and assess the probability of a successful double-spending attack. 
For this, we use the model of independent players (as in our previous works [4]). This 
model differs from the gambler's ruin model adopted in [2, 3] by both the number of 
elementary outcomes and general expressions for assessing the probability of a suc-
cessful attack. To simplify computational calculations, we use polynomial interpola-
tion, as well as binomial coefficients to extrapolate intermediate calculations. The 
results of numerical simulation show that simplified formulas can significantly reduce 
computational costs and obtain approximate estimates with acceptable accuracy of 
calculations. These results can be used to calculate the security indicators of block-
chain networks with probabilistic consensus protocols. 

2 The probabilities of forming a chain of blocks under the same 
initial conditions 

To obtain the formula for the probability of a successful double-spending attack, let 
us consider the following possible probabilities and combinations in which the at-
tacker succeeds: 



1. Success is not possible on the first attempt ( 1 0 0 1t N j k       ). The at-

tacker may form no more than one block in one attempt, and in order to succeed, 
he needs to wait for the generation of the block by the honest network and extend 
the chain of blocks to one more. Thus, the attacker needs to form at least two 
blocks. The probability of success of the attacker is defined as: 1, 0, 0 0N j kPI      

2. The attacker may succeed on the second attempt ( 0 1 2t N    ) if he managed 
to form on both attempts per block, and the honest network will form only one 
block (no matter on the first or second attempt).The total probability of this event: 

          2
1, 0, 1 1 1 2 1N j kPI p p q q p p q q p p q                   

3. On the third attempt ( 0 2 3t N    ). If the honest network forms a block on the 
first or second attempt, then the second block should be formed by the attacker 
only on the third attempt, otherwise (if the second block is formed on the second 
attempt) there is a previous case (as for 1, 0, 1N j kPI    ). If the honest network forms 

the second block on the third attempt, there are no restrictions on the formation of 
blocks for the attacker. The total probability of the event will be calculated simi-
larly to the events described above. Thus, the total probability will be: 

   
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4. On the fourth attempt ( 0 3 4t N    ) similar to the situation described in the 
previous paragraph, the total probability for the attacker to succeed will be equal 
to: 
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5. On the t -th attempt ( 0t N k   ) the probability of success of the attacker is 
equal to: 
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Carrying out similar constructions and summing all the 0,1,2,k   , we find the 
probability of a successful double-spending attack, provided that the honest net-
work is formed of no more than 1N   blocks: 
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Let us consider the case when 2, 0N j  . 

If 0k  , as well as in the previous case, success is impossible. 
If 1k   and, therefore, 0 1 3t N    , the probability of success of the attacker 

is equal to: 

  2 3
2, 0, 1 3 1 .N j kPI p p q         

If 2k   ( 4t  ), the probability of successful attack is equal to: 

   
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If 3k   ( 5t  ), the probability of success of the attacker is equal to: 
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The above results allow us to obtain expressions for arbitrary values of N  and k : 
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Let us consider the case for 1, 1N j  . 

If 0k   attacker's success is impossible 
If 1k   the probability of success of the attacker is equal to: 

    1, 1, 1 1N j kPI p p p q q q          . 

If 2k   ( 4t  ) the probability of the attacker's success is equal to: 

     22 3
1, 1, 2 1 1 3 2 2 .N j kPI p p q q               

If 3k   ( 5t  ) the probability for the attacer to succeed is equal to: 
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             

 

Thus, summarizing the results for arbitrary initial values, we obtain the probability 
of a successful double-spending attack ( PI ) on blockchain systems using the consen-
sus algorithm Proof of Work based on a hash function (without the attacker's advan-
tage in one pre-formed block):  
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 (1) 

where 

 t N j k   ; 
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Although the expression (1) provides an accurate quantitative result on the prob-
ability of successful double-spending attacks, it also has limitations on its use, which 
is related to the polynomial complexity of computational calculations. In this paper, 
we propose using an approximate formula to calculate the probability of a successful 
attack. For this, simplified expressions based on polynomial interpolation can be used. 
In addition, we explore other approximation methods, including using binomial coef-
ficients. 



3 Extrapolation of the sum in the formula of calculation of the 
probability of success of the attacker 

The value of sums ( psum  and qsum ) is increasing very fast and even at 10j   and  

15k   the calculation becomes a very difficult task. For example, if 20j   and 

7k   the sum 16 570 275 123psum   (this value was calculated by the computer for 

several hours). On the other hand, these sums for each value N  could be calculated 
once and used for different probabilities. Tables 1, 2, as an example, provide calcu-
lated values of psum  for 1,5N   and some values of j  and k . 

Table 1. Values of psum  in the expression(1) for 1N   

k  j  

1 2 3 4 5 6 7 

1 1 7 25 65 140 266 462 

2 1 11 58 210 602 1470 3192 

3 1 16 117 563 2073 6327 16797 

4 1 22 213 1314 6041 22528 71775 

5 1 29 359 2761 15495 69305 260923 

6 1 37 570 5345 35950 189909 833918 

7 1 46 863 9690 76927 473768 2399565 

8 1 56 1257 16648 154007 1093596 6327475 

9 1 67 1773 27349 291592 2364642 15498742 

10 1 79 2434 43256 526520 4835606 35639160 

11 1 92 3265 66225 912695 9423549 77586723 

12 1 106 4293 98570 1526907 17608428 161007165 

13 1 121 5547 143133 2476031 31706737 320288355 

14 1 137 7058 203359 3905808 55248173 613629478 

15 1 154 8859 283376 6011425 93484314 1136709035 

16 1 172 10985 388080 9050125 154064036 2042783757 

17 1 191 13473 523225 13356092 247916850 3571657702 

18 1 211 16362 695518 19357870 390392550 6090688552 

19 1 232 19693 912719 27598589 602713571 10151890353 

20 1 254 23509 1183746 38759285 913805304 16570275123 
 
However, given the limited number of calculated coefficients of psum , the expres-

sion (1) gives a good match with the experimental data (setting up the computational 
experiment is given in [4]) when the probabilities q  and p significantly (twice or 

more) differ from each other. However, there is no need to calculate the large number 
of values in the sum by j , that allows to be limited to some small pre-calculated set 

of values of psum . Also, at , 0, 2q p   the blocks will be formed with a relatively 



high probability, that makes it possible to significantly reduce the sum by k . In addi-
tion, for smaller values N , the sum psum  grows more slowly, making it possible to 

calculate psum  for more values j  and k . 

However, in order to improve the accuracy of the calculation (increasing the calcu-
lated coefficients j  and k ), it is possible to extrapolate the values of psum  using 

polynomial approximation. Thus, for 1j   the value psum  is very well approximated 

(within known values of k ) and extrapolated (beyond calculated values of k ) by a 
polynomial: 

 4 3 2 0,125 0,4167 0,375 0( 1, 1, ) ,0833psum k k kk kN j         , 

for 2j  : 

 
6 5 4 3

2

0,0097 0,0792 0,2431( 0,3542

0,2464 0,0947 0,2158.

1, 2, )p k k k ks m j k

k k

u N          

    


 

Extrapolation is also well done by j , and the value of k  is fixed. 

Table 2. Values of psum  in the expression (1) for 5N  . 

k  j  

1 2 3 4 5 6 7 

1 1 43 631 5335 31795 148219 575107 

2 1 51 900 9100 64215 350709 1578214 

3 1 60 1265 15185 125925 799834 4145505 

4 1 70 1745 24600 237279 1736315 10277050 

5 1 81 2361 38661 429387 3587388 24053848 

6 1 93 3136 59045 748230 7079128 53381664 

7 1 106 4095 87850 1259860 13400268 112900788 

8 1 120 5265 127660 2056860 24434838 228674250 

9 1 135 6675 181615 3266253 43084995 445514295 

10 1 151 8356 253486 5059063 73710049 838128214 

11 1 168 10341 347755 7661745 122712954 1527675457 

12 1 186 12665 469700 11369715 199311469 2705845884 

13 1 205 15365 625485 16563225 316537844 4669213780 

14 1 225 18480 822255 23725842 492518292 7867415920 

15 1 246 22051 1068236 33465804 752091712 12969669012 

16 1 268 26121 1372840 46540540 1128836172  

17 1 291 30735 1746775 63884655 1667581587  

18 1 315 35940 2202160 86641695 2427497877  

19 1 340 41785 2752645 116200021 3485859706  

20 1 366 48321 3413536 154233135 4942601727  



 
As established experimentally, it is desirable to use the Lagrangian interpolation 

polynomial for computational methods (see, for example, [7] or [8]). The essence of 
which is as follows. We know some values of psum  at the first values of ix  (we as-

sume ix to be ik  or ij ), where 1,2, ,i n  , and n  is the number of points by which 

the Lagrangian polynomial is constructed (in our case, for 1N  , n  must be chosen 
as 3 2n j   for extrapolations by k  and as 2 1n k    for extrapolations by j ), 

then we can extrapolate psum  by Lagrange interpolation polynomial: 

 
0 0,
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nn
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p p i

i s i s
s i

x x
sum sum x

x x 


 
    

 
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The results of the extrapolation of value of psum  are illustrated in Figure 1, which 

shows a graph of the dependence of precisely calculated values of psum  (solid line) 

by formula (1) and its approximation and extrapolation (dashed line). 
Extrapolation using a polynomial gives a very good accuracy, but with increasing 

k  ( j ) increases the number of first values of psum  that must be known and whose 

values are taken into account in the Lagrangian interpolation polynomial. Given that 
we are aware of a rather limited number of psum  (for example, in Table 2 for 7k   

this is only for 15j  ) polynomial extrapolation will also have some limits. 

The next extrapolation method we have applied is binomial extrapolation, that is, 
extrapolation using binomial coefficients of the form 

 
2

1i
p

N j k
sum d

N j

   
   

 

where d  – some coefficient 0 1d  , which is selected experimentally. 
Binomial extrapolation gives much less precision than polynomial, but better than 

neglecting additives in general. This is especially noticeable when q p  and a sig-

nificant number of coefficients j  and k  must be considered. 

Thus, the results obtained can significantly reduce the complexity of the calcula-
tions when calculating the probability of a successful double-spending attack. In par-
ticular, to calculate the probabilities by the formula (1), it is necessary to calculate an 
infinite number of sums psum , each of which in turn is formed by summing a large 

number of terms. We were able to simplify these intermediate sums by introducing 
interpolation polynomial equations. By extrapolating the sums to a larger data range, 
we can replace complex and cumbersome calculations with simple and convenient 
calculations based on interpolation polynomials. The simulation results show that the 
values calculated in this way almost 100% repeat the results obtained by exact expres-
sions using formula (1). 



 
а) 

 

 
б) 

Fig. 1. Dependencies of values of psum  (solid line) calculated by formula (1) and its approxi-

mation and extrapolation (dashed line) for 1N   a) extrapolation by k  b) extrapolation by j  

These results can be useful for assessing the security of blockchain networks with 
probabilistic consensus building [9-11]. In particular, practical recommendations for 
constructing asset transfer protocols in decentralized systems can be justified through 
restrictions on the probability of corresponding risks. For example, given the restric-
tions on the admissible probability of loss of an asset as a result of a double-spending 



attack, our formulas allow us to calculate the minimum number of confirmed transac-
tions (length of a chain of blocks) and these calculations can be performed very 
quickly even in the conditions of a rapid change in the share of controlled computing 
resources. These and other studies are our promising areas of further work. 

4 Conclusions 

This paper address in detail one of the main vulnerabilities of blockchain systems 
built by consensus with probabilistic completeness - the double-spending attack. 

Basing on the model of "independent players", we have obtained the analytical ex-
pression of the probability of a successful double-spending attack on a blockchain 
system which uses the consensus algorithm Proof of Work (PoW) based on a hash 
function depending on the number of confirmations used and the number of attempts 
and hash rate of both the honest network and the attacker. 

The adopted model of "independent players" and the resulting formula (1) elimi-
nates the significant disadvantages inherent in other work in this field, namely: 

 the race between two participants of the network does not have to be endless, it is 
enough to be limited by some fixed number of attempts; 

 uses a more adequate, in the authors' view, model of "independent players", which 
includes a space of four elementary events, instead of two, used in the model of 
"gambler's ruin"; 

 the probability of forming a block with the honest network and the attacker are 
independent quantities that are directly determined by the capacities possessed by 
the participants, and the mentionedprobabilities are independent on each other, that 
is, the requirement 1p q   is optional; 

 it is calculated the probability for the attacker to be ahead of the honest network, 
and not only the probability of catching up with it, that is, when the attacker does 
not have an advantagein one pre-formed block. 

The quantitative values obtained by the expression (1) of the probability of a suc-
cessful attack for different opportunities of the attacker (the probability of forming a 
block), the different number of formed blocks after which the agreement is considered 
confirmed, the different duration of the race (the number of blocks during which the 
attacker continues to catch up the network) are given. To simplify the numerical cal-
culations, it is proposed to use polynomial approximation. In particular, the interme-
diate sums in formula (1) were able to be approximated by Lagrange interpolation 
polynomials. In addition, we used binomial extrapolation. However, the simulation 
results show that polynomial interpolation provides greater accuracy. The formulas 
obtained make it possible to quickly assess the probability of a successful double-
spending attack using these simplified formulas.  

This study can be useful for modeling and evaluating the effectiveness of block-
chain networks, as well as in other practically important applications [12-16]. 
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