K. Stiepanova<sup>1</sup>

stepanova.ekaterina@hneu.net

## THE CAUCHY FUNCTION FOR DIFFERENCE EQUATIONS

An interesting and alternative to the well-known approach is the method of finding partial solutions of linear differential equations (with constant and variable coefficients), which is to use Cauchy function G(x, y) that determines (for example, a linear differential equation of second order with constant coefficients) as a solution of the following Cauchy problem:

$$\begin{cases} \frac{d^2G}{dx^2} + p\frac{dG}{dx} + qG = 0\\ G\Big|_{x=z} = 0 \quad \frac{dG}{dx}\Big|_{x=z} = 1 \end{cases}$$
 (1)

Then the particular solutions of the inhomogeneous equation

$$y'' + py' + qy = f(x) \tag{2}$$

is 
$$y(x) = \int_{x_0}^{x} G(x, z) f(z) dz$$
 (3)

Indeed,

$$\frac{dy}{dx} = G(x,x) f(x) + \int_{x_0}^x \frac{dG(x,z) f(z) dz}{dx} =$$

$$= \int_{x_0}^x \frac{\partial G(x,z) f(z) dz}{\partial x}$$

$$\frac{d^2 y}{dx^2} = \frac{dG(x,z) f(z)}{dx} \Big|_{x=z} + \int_{x_0}^x \frac{d^2 G(x,z) f(z) dz}{dx^2} =$$

$$= f(x) + \int_{x_0}^x \frac{dG(x,z) f(z) dz}{dx^2}$$

Let's substitute y(x) from (3),  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  into the equation (2) and due to (1) we get an identity. Now we find G(x,z) for the equation

$$\frac{d^2y}{dx^2} + w_0^2 y = f(x) . {4}$$

We rewrite the equation in terms of function G(x, y)

$$\frac{d^2G}{dx^2} + w_0^2G = 0$$

and we will get

$$G(x,z) = C_1(z)\sin w_0 x + C_2(z)\cos w_0 x$$
.

As 
$$G(x,x) = 0 \implies C_1(z)\sin w_0 z + C_2(z)\cos w_0 z = 0$$
.

From the initial condition  $\frac{dG}{dx}|_{x=z} = 1$  we have

$$C_1(z)\cos w_0z - C_2(z)\sin w_0z = 1.$$

Solving the system of this algebraic equations, we find

$$C_1(z) = \frac{\cos w_0 z}{w_0}$$
 and  $C_2(z) = -\frac{\sin w_0 z}{w_0}$ .

Hence, 
$$G(x,z) = \frac{1}{w_0} \sin w_0 (x-z)$$
.

Thus, a particular solution of the equation (4) is

$$y = \frac{1}{w_0} \int_{x_0}^{x} \sin w_0 (x - z) f(z) dz.$$

For inhomogeneous linear differential equations n-th order

$$\sum_{k=0}^{n} a_k(x) \frac{d^k y}{dx^k} = f(x)$$
 (5)

Cauchy function G(x,z) introduced similar in the sense that G(x,z) is the solution of the following problem with appropriate initial data:

$$\sum_{k=0}^{n} a_k(x) \frac{d^k G(x,z)}{dx^k} = 0$$

$$G|_{x=z}=0$$
,

$$\frac{dG}{dx}\big|_{x=z} = 0, \dots, \frac{d^{n-2}G}{dx^{n-2}}\big|_{x=z} = 0, \frac{d^{n-1}G}{dx^{n-1}}\big|_{x=z} = 1.$$

<sup>&</sup>lt;sup>1</sup> Simon Kuznets Kharkiv National University of Economics, Kharkov

Then the particular solution of the inhomogeneous equation (5) has the appearance

$$y(x) = \int_{x_0}^{x} G(x, z) f(z) dz.$$

As for linear differential equations, difference equations if you can enter the Cauchy function, with which there is a particular solution of the inhomogeneous difference equation for arbitrary right side. Consider the simplest case of a linear difference equation of 1st order with constant coefficients

$$y_{n+1} + py_n = f(n) \tag{6}$$

Let's introduce the Cauchy function as a solution to the Cauchy problem:

$$\begin{cases} G(n+1,m) + pG(n,m) = 0 \\ G(n,m)|_{n=m} = 1 \end{cases}.$$

The solution is  $G(n,m) = (-p)^{n-m} = G(n-m)$ . Then a particular solution of equation (6) for any f(n) is

$$y_{n,particular} = \sum_{m=1}^{n-1} G(n-m-1)f(m).$$

Let as consider also the inhomogeneous difference equation of the 2nd order with constant coefficients

$$y'_{n+2} + py_{n+1} + qy_n = f(n)$$
 (7)

We find a partial solution of this equation using the Cauchy function G(n,m), which is the solution of the following initial value problem:

$$G(n+2,m)+pG(n+1,m)+qG(n,m)=0$$
;

$$G|_{n=m} = 0$$
  $G(n+1,m)|_{n=m} = 1$ 

The corresponding characteristic equation has the form  $z^2 + pz + q = 0$ . Let, for example, be the roots of this equation  $\lambda_1$  and  $\lambda_2$  are real and different then

$$G(n,m) = C_1(m)\lambda_1^n + C_2(m)\lambda_2^m.$$

Then from the initial conditions

$$\begin{cases} C_1(m)\lambda_1^m + C_2(m)\lambda_2^m = 0\\ C_1(m)\lambda_1^{m+1} + C_2(m)\lambda_2^{m+1} = 1 \end{cases}$$

The solution to this system is

$$G(n,m) = \frac{\lambda_1^{n-m}}{\lambda_1 - \lambda_2} - \frac{\lambda_2^{n-m}}{\lambda_1 - \lambda_2} = G(n-m).$$

Then the particular solution of equation (7) has the form

$$y_{n,particular} = \sum_{m=1}^{n-1} G(n-1-m) f(m) =$$

$$= \frac{1}{\lambda_1 - \lambda_2} \sum_{m=1}^{n-1} (\lambda_1^{n-m-1} - \lambda_2^{n-m-1}) f(m)$$
(8)

For linear inhomogeneous difference equation of k -th order type

$$\sum_{j=0}^{k} a_j y_{n+j} = f(n)$$

the Cauchy function G(n,m) introduced as a solution corresponding equation with special initial data:

$$\sum_{j=0}^{k} a_j G(n+j,m) = 0$$

$$G(n,m)\Big|_{n=m}=0$$

...

$$G(n+k-2,m)\Big|_{n=m}=0$$

$$G(n+k-1,m)\Big|_{n=m}=1$$

Then the partial solution of the inhomogeneous equation is written as

$$y_n = \sum_{m=1}^{n-1} G(n-1,m) f(m)$$

Obviously, the same way you can get a solution in the case of multiple or complex roots of the characteristic equation.

## References

- 1. Шарковский А.Н., Майстренко Ю.Л., Романенко Е.Ю. Разностные уравнения и их приложения. Киев: Наук. думка, 1986.
- 2. Романко В.К. Разностные уравнения: Учебное пособие БИНОМ. Лаборатория знаний 2006.
- 3. Хусаінов П. Диференційні рівняння. К., 1999.
- 4. Биргкан С.Е., Брюханов Ю.А. Разностные уравнения: учеб. пособие / Яросл. гос. ун- т им. П. Г. Демидова. Ярославль: ЯрГУ, 1994.
- 5. Гельфанд В.И. Исчисление конечных разностей. М. : ГИФМЛ, 1959.