MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

 SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY OF

 SIMON KUZNETS KHARKIV NATIONAL UNIVERSITY OF ECONOMICS

 ECONOMICS}

STATISTICAL THINKING FOR SCIENCE ABOUT DATA

Guidelines
for independent work
of Master's (second) degree students of speciality 122 "Computer Science"

UDC 004.422.6(07.034)

Compiled by: O. Rayevnyeva

V. Derykhovska

Затверджено на засіданні кафедри статистики і економічного прогнозування.

Протокол № 9 Б від 20.03.2021 р.

Самостійне електронне текстове мережеве видання

Statistical Thinking for Science about Data [Electronic resource] :
S81 guidelines for independent work of Master's (second) degree students of speciality 122 "Computer Science" / compiled by O. Rayevnyeva, V. Derykhovska. - Kharkiv : S. Kuznets KhNUE, 2021. - 108 p. (English)

Tasks for independent work on the academic discipline and guidelines for carrying out the tasks are given to help the students gain practical skills in the use of the tools of economic and mathematical modeling in the study of complex socioeconomic processes and systems.

For Master's (second) degree students of speciality 122 "Computer Science".

UDC 004.422.6(07.034)

Introduction

The rapid development and wide application of the newest packages of applied programs and computer technology tools necessitate the formation of a specialist in business intelligence and information systems with new competences aimed at acquiring knowledge and skills in the use of econometric and mathematical modeling for the analysis of complex, mass socioeconomic phenomena and processes in various spheres of activity.

Statistical Thinking for Science about Data is one of the basic academic disciplines of the Master's program "Business Analysis and Information Systems in Entrepreneurship". The academic discipline is a response to the contemporary needs of the community. It provides students with an in-depth understanding of the business context of any socioeconomic processes and will enable them to solve the problems associated with analytical work in the IT-industry.

While studying educational material of this discipline students are involved in theoretical, practical, and independent training. In the credit-modular system of organization of the educational process, independent training is essential. The main purpose of independent training is the creation of conditions for the fullest realization of the creative potential of students through people-centred development of their abilities for research and individual activity. Moreover, the organization of the students' independent work based on the competence approach provides opportunities for personal involvement of students in the development of professional activity and the formation of their professionally significant qualities.

Carrying out tasks of independent works is aimed at the development of students' skills in the extension and deepening of theoretical knowledge and acquisition of professional competences in forecasting socioeconomic processes and modeling complex systems.

Studying this academic discipline enables students to get the ability:
to acquire practical knowledge of statistical modeling and forecasting;
to receive skills in the formation of the information space research;
to model relationships between economic processes and phenomena;
to model and predict time series in the study of the dynamics of the development of socioeconomic systems;
to identify and simulate the behavior of homogeneous complex socioeconomic systems.

Content module 1. The methodological bases of statistical modeling and forecasting

Topic 1. The categorical basis of statistical modeling and forecasting

Task 1. Check the law of distribution of the variation series (Table 1).
Table 1
The dynamics of the value of fixed assets

Period	Cost of fixed assets, thousand UAH
1st quarter of 2015	12572.05
2nd quarter of 2015	14405.39
3rd quarter of 2015	15424.83
4th quarter of 2015	16201.19
1st quarter of 2016	16390.52
2nd quarter of 2016	16598.67
3rd quarter of 2016	18241.53
4th quarter of 2016	19635.99
1st quarter of 2017	19900.40
2nd quarter of 2017	19900.10
3rd quarter of 2017	19934.72
4th quarter of 2017	19989.89
1st quarter of 2018	20321.21
2nd quarter of 2018	20333.16
3rd quarter of 2018	20466.96
4th quarter of 2018	20534.77
1st quarter of 2019	20606.19
2nd quarter of 2019	20657.29
3rd quarter of 2019	20792.77
4th quarter of 2019	20821.08

Guidelines

1.1. It is expedient to check statistical homogeneity of factorial features using the coefficient of variation with a limiting value of 33%.

We can simplify verification of the law of distribution of the time series using special built-in functions of MS Excel or Statistica 10.0 applications. Let's use the add-in tool Data analysis "Descriptive statistics" MS Excel.

The calculation of statistical indicators is shown in Fig. 1.

Cost of fixed assets	
Mean	18686,4355
Standard Error	557,2369262
Median	19917,56
Mode	$\# H / A$
Standard Deviation	2492,039293
Sample Variance	6210259,84
Kurtosis	0,295954011
Skewness	$-1,191036708$
Range	8249,03
Minimum	12572,05
Maximum	20821,08
Sum	373728,71
Count	20

Fig. 1. The results of the calculation

Using the calculations performed in Fig. 1, we obtain the value of the coefficient of variation for the studied variable:

$$
V_{x}=\frac{\sigma_{x}}{\bar{x}} \times 100 \%=\frac{2492.04}{18686.43} \times 100 \%=13.3 \% .
$$

The coefficient of variation is used to characterize the homogeneity of the studied population. The statistical population is considered to be quantitatively homogeneous if the coefficient of variation does not exceed 33 \%.

The calculations confirm the hypothesis of homogeneity of the variation series.
1.2. The criterion of proximity to the normal distribution law is "the threesigma rule" which expresses a conventional heuristic that nearly all values are taken to lie within three standard deviations of the mean. According to "the three-sigma rule", $\mathrm{x}_{\text {min }}$ and $\mathrm{x}_{\max }$ should belong to the area $\left[\overline{\mathrm{x}} \pm 3 \sigma_{\mathrm{x}}\right.$].

So, let's check:

$$
\left.\begin{array}{rl}
{\left[\bar{x} \pm 3 \sigma_{x}\right]=18686.43} & \pm 3 \times 2492.04=[11210.31 ; 21162.55] \\
\begin{array}{r}
x_{\min } \\
\\
x_{\max }
\end{array}=12572.05821 .08
\end{array}\right\} \rightarrow[11210.31 ; 26162.55] .
$$

Based on the calculations, we can conclude that the distribution of the value of fixed assets is close to the normal law of distribution.

Task 2. Using the Basic statistics menu of the program Statistica 10.0, calculate the main characteristics of the number of distributions (Table 2).

Table 2
The dynamics of the number of the registered unemployed in 2019

Month	The number of the registered unemployed, thousand people
January	364.3
February	367.0
March	340.7
April	311.4
May	300.9
June	287.1
July	280.8
August	275.0
September	268.2
October	259.3
November	288.9
December	338.2

Guidelines

After starting the program Statistica 10.0 and creating a new sheet with the original data (you need to create a spreadsheet with one variable (1 column) and 12 observations (rows)), in the Statistics menu, select Basic statistics / Tables. In the opened window, select Descriptive statistics, which will open a window for calculating the complex descriptive statistics (Fig. 2).

Next, you need to go to the Advanced tab and select the parameters you want to calculate - groups of indicators of the distribution center (mode, median, mean), the uniformity of distribution (range, minimum and maximum, variance, coefficient of variance, standard deviation), the distribution form (skewness, kurtosis) as shown in Fig. 3.

Fig. 2. The Basic statistics window

Fig. 3. Choosing the parameters of Descriptive statistics
The system will calculate these indicators and present the results in the form of a table (Fig. 4) after the button is pressed

```
Evnn Summary
```

	Descriptive Statistics (Spreassheet2)											
Variable	Mean	Median	Mode	Frequency of Mode	Minimum	Maximum	Range	Variance	Std. Dev.	Coef.Var.	Skewness	Kurtosis
Number of registered unemployed	306,8167	294,9000	Multiple	1	259,3000	367,0000	107,7000	1387,580	37,25023	12,14088	0,526641	$-1,13727$

Fig. 4. The results of the function Descriptive statistics

So, on average, there were 306 thousand unemployed people in 2019, with the maximum number being 367 thousand people and the minimum being 259 thousand. In general, this time series is symmetrical (with inherent positive right-side asymmetry (Skewness >0)), and insignificant sharpness of the distribution peak (Kurtosis <0) is observed. The variance indicates a significant measure of the variation in the values of a random variable relative to its mathematical expectation and the average value, and the coefficient of variation is less than 33%, which indicates that the number of unemployed corresponds to the normal distribution law (Coef.Var = 12.14 \%).

Task 3. For a preliminary analysis of the information space of the study, it is necessary to verify the law of the distribution of indicators characterizing the retail trade in Ukraine (Table 3).

Table 3

Basic retail indicators

Years	Retail trade turnover of enterprises (legal entities), mln	Presence of objects of retail trade of enterprises (legal entities) by the end of the year, thousand	The number of markets for consumer goods at the end of the year, units
1	2	3	4
1990	78	145.7	1576
1991	132	143.1	1506
1992	1456	138.0	1482
1993	43824	141.2	1418
1994	336968	138.3	1377
1995	11964	133.7	1282
1996	17344	132.0	1231
1997	18933	127.5	1551
1998	19317	121.0	2120
1999	22151	111.6	2320
2000	28757	103.2	2514
2001	34417	96.4	2715
2002	39691	89.3	2863
2003	49994	83.8	2891
2004	67556	78.5	2869
2005	94332	75.2	2886
2006	129952	73.6	2890
2007	178233	71.9	2834
2008	246903	69.2	2785
		8	
			2

Table 3 (the end)

1	2	3	4
2009	230955	65.3	2761
2010	280890	64.8	2758
2011	350059	64.2	2698
2012	405114	62.2	2647
2013	433081	59.8	2609
2014	438343	49.6	2177
2015	487558	49.6	2134

Task 4. Find two time series that characterize the development of the Ukrainian industry in 2007 - 2019 and check them for normality of the distribution law.

Task 5. Using the statistical data of the website of the State Statistics Service of Ukraine [19], find information on the amount of capital investment (on a quarterly basis) and analyze this series using the module "Descriptive Statistics" of the program Statistica 10.0 and MS Excel. Compare the results.

Task 6. Using a powerful graphical toolkit of Statistica 10.0 (the Graphs menu) and your own information space of research, build a 2 D histogram, point and line graphs.

Task 7. Find spatial one-dimensional data (at least 30 observations) and perform statistical analysis using descriptive statistics and graphic procedures, check your ranks for normal distribution law and draw conclusions (give an economic interpretation of the results).

The list of questions for independent work

1. What is the need for using economic and mathematical models in the process of analysis of socioeconomic systems?
2. What is the difference between strictly determined models and models that take into account uncertainty?
3. What are the basic principles of constructing models?
4. What is the adequacy of economic and mathematical models?
5. What is the place occupied by models in society?
6. What are the main classifications of economic and mathematical models?
7. What are the approaches to the system category interpretation?
8. What is the definition of a socioeconomic system?
9. What are the stages of the model construction process?
10. What are the physical models different from analog ones?

Topic 2. Regression models as a means of researching economic processes

Task 1. Using the program Statistica 10.0, find the forecast value of GDP in the next period with the following values of indicators: the consumer price index of 100.7 million UAH, export of goods and services in the amount of 3908266.6 million UAH, import of goods and services of 4778308.8 million UAH (Table 4).

Table 4

The input data

Period	GDP, mln UAH (Y)	Consumer price index (X1)	Export, mln UAH $($ X2 $)$	Import, mln UAH $($ X3 $)$
1	2	3	4	5
1	1937.3	102.6	2339402.7	2712852.43
2	1820.2	101.2	2518534.3	3171353.67
3	2054.4	101.3	3129139.2	3872083.7
4	2029.8	100.4	2953856.7	3283634.6
5	2108	100.5	3104624.5	3632466
6	2221.8	100.3	3317653.5	3610201.2
7	2433.1	100.7	3344490.8	3686831.1
8	2030	100.2	3511110.9	3839422.4
9	2836.1	100.1	3676317.9	4147061.3
10	2567.6	100.3	3437449.5	4021637.6
11	2467.7	100.6	3344121.8	3922054
12	2358	100.8	3691002.6	5134893.1
13	2249.9	101.7	3208484.9	3700647.9
14	2049.5	101.7	3409760.2	4297569.8
15	2487.4	100.8	4108205.4	4953434.5
16	2488.3	100.6	4067299.9	4820236.3
17	2576	100.6	4083445.1	4852211.6
18	2692.1	101	4235294.1	4682039.7
19	2768.2	100.9	4258746.5	5315298.1
20	2978.5	100.1	4167498.9	4872915.4
21	3168.2	100.8	4114710.7	4851865.6
22	3230.8	101.6	4345291.8	5872680.3
23	3447.3	101.2	4450168.3	5822204
24	3027.9	101.1	4799157.8	6628819.8
25	2963.7	102.3	3663214.9	4627526.5
26	2854	101.2	4682418.3	6465057.5
27	3087.4	101.2	5444491.8	7712994.2
28	3298.8	101.4	5571314.2	7936247.4

Table 4 (the end)

1	2	3	4	5
29	3397.5	101.4	6284581.1	7710564
30	3455	101	6896161.2	7934961.4
31	3679.8	100.5	7616856.6	8822925.9
32	3866.6	100.4	6718135.9	8155969.3
33	3997.5	100.8	6685131.4	8479144.1
34	3858.1	100.9	5861332.6	7647194.6
35	3649.8	100.8	3622525.2	5264462.7

Guidelines

1. The construction of a forecast is possible only under the condition of a qualitative and adequate regression model. Therefore, first it is necessary to build a multifactor regression model of the dependence of GDP (Y) on the studied indicators (X1 - X3).

To do this, let's use the menu Statistics and the module Multiple regression. The characteristics of the model and the degree of their adequacy can be obtained by clicking the Summary: Regression results button. The results of building a multifactor econometric model are shown in Fig. 5.

$\mathrm{N}=35$	Regression Summary for Dependent Variable: Y (Spreadsheet2) $\mathrm{R}=, 86854530 \mathrm{Rl}=75437094$ Adjusted $\mathrm{Rl}=, 73060039$ $F(3,31)=31,736 p<, 00000$ Std. Error of estimate: 321,40					
	$\mathbf{b}^{ \pm}$	$\begin{gathered} \text { Std. Err. } \\ \text { of } b^{*} \end{gathered}$	b	$\begin{gathered} \text { Std. Err. } \\ \text { of } b \end{gathered}$	t(31)	p-value
Intercept			7964,197	10539,56	0,755648	0,455564
X1	-0,062666	0,096922	-67,293	104,08	-0,646559	0,522676
X2	-0,029700	0,375100	-0,000	0,00	-0,079178	0,937400
$\times 3$	0,894519	0,372757	0,000	0,00	2,399734	0,022603

Fig. 5. The regression results
The obtained results indicate the following:
the coefficient of multiple correlation (R) is 0.8685 . The measured coefficient is from 0 to +1 (if the size of R is close to 1 , the obtained model is adequate and can be used for the analysis and prediction of economic processes);
the model's determination coefficient (RI) is 0.7544 (if the size of R^{2} is close to 1 , the obtained model is adequate and can be used for the analysis and prediction of economic processes);
the adjusted determination coefficient based on the number of observations and the number of parameters is 0.7306 (Adjusted R);

Fisher's eligibility criterion $\mathrm{F}(3.31)=31.736$ (the Fisher's criterion is used to assess the statistical significance of the coefficient of determination. If the values obtained are more than the tabular ones, R^{2} is significant, and the model is adequate);
$B(a 0, a 1, a 2, a 3)=(7964.197 ;-67.293 ;-0,00 ; 0.00)$ are the parameters of the model;
the mean square deviation of the model parameters is (10 539.56; 104.08; 0,00; 0.00);
$t(31)=(0.7556 ;-0.6465 ;-0.0791 ; 2.3997)$ is the significance of the parameters according to the Student's criterion (the Student's criterion is used to assess the statistical significance of the coefficient of correlation if the values obtained are more than the tabular ones, R is significant, and the model is adequate).

The analysis of the above results shows that the model is adequate, and its parameters are significant, then the model can be used to build a forecast. To calculate the predictive values of a dependent variable, the Predict dependent variable option is at the bottom of the Regression analysis results window (Fig. 6).

Fig. 6. Choosing the option Predict dependent variable
Initiating the appropriate option, you need to specify the values of the factor characteristics (Fig. 7).

The forecasting results are presented in the form of a table, which additionally presents the parameters of the model and the limits of the forecast interval (Fig. 8).

Fig. 7. Predictive values of the factor characteristics

	Predicting Values for (Spreadsheet2) variable: Y		
	b-Weight	Value	b-Weight *-Value
	$-67,2926$	101	$-6776,36$
	$-0,0000$	3908267	$-54,75$
X3	0,0003	4778309	1518,22
Intercept			7964,20
Predicted			2651,30
$-95,0 \% \mathrm{CL}$			2524,09
$+95,0 \% \mathrm{CL}$			2778,52

Fig. 8. The GDP forecast results
The predicted GDP = 16313.77 billion UAH; the confidence interval of the forecast values is $4691.18<\mathrm{y}<27936.36$.

Task 2. Based on Table 5, construct a single-factor regression model.
Table 5

The input data

Years	The number of agricultural animals (cattle number)	Milk production, thousand tons	Years	The number of agricultural animals (cattle number)	Milk production, thousand tons
1	2	3	4	5	6
1990	25194.8	24508.3	2005	6902.9	13714.4
1991	24623.4	22408.6	2006	6514.1	13286.9
1992	23727.6	19113.7	2007	6175.4	12262.1
1993	22456.8	18376.5	2008	5490.9	11761.3
1994	21607.3	18137.5	2009	5079.0	11609.6
1995	19624.3	17274.3	2010	4826.7	11248.5
1996	17557.3	15821.2	2011	4494.4	11086.0

Table 5 (the end)

1	2	3	4	5	6
1997	15313.2	13767.6	2012	4425.8	11377.6
1998	12758.5	13752.7	2013	4645.9	11488.2
1999	11721.6	13362.2	2014	4534.0	11132.8
2000	10626.5	12657.9	2015	3884.0	10615.4
2001	9423.7	13444.2	2016	3750.3	10381.5
2002	9421.1	14142.4	2017	3682.3	10280.5
2003	9108.4	13661.4	2018	3530.8	10064.0
2004	7712.1	13709.5	2019	3332.9	9663.2

Do the following:
2.1. Construct a linear econometric model and determine all its characteristics.
2.2. Check the statistical significance of the model parameters and the adequacy of the built model.
2.3. Calculate the theoretical values of the dependent variable and the model error. Construct a linear function graph with confidence intervals. Construct a histogram and the error distribution schedule on normally probabilistic paper.
2.4. Draw conclusions about the adequacy of the built model, give an economic interpretation of results.

Task 3. Using a single-factor regression model from task 2 and the program Statistica 10.0, build a forecast of milk production for 2020.

Task 4. Using statistical information from Table 6, construct a multifactor regression model of the dependence of GDP (Y) on the studied indicators ($\mathrm{X} 1-\mathrm{X} 3$). Draw conclusions about the adequacy of the built model, give an economic interpretation of this dependence and the possibility of using it.

Table 6

The input data

Period	GDP per capital, UAH (Y)	Consumer price index (X1)	Indices of agricultural production (X2)	The number of registered unemployed, thousand people (X3)
1	2	3	4	5
1	6792	112.104	88.715	983
2	7273	112.3	92.5	981.8
3	7782	112.014	94.142	946
4	8309	111.436	94.119	9420

Table 6 (the end)

1	2	3	4	5
5	8842	110.79	93.313	895
6	9372	110.3	92.6	881.5
7	9893	110.147	92.652	860
8	10430	110.338	93.302	794
9	11000	110.835	94.176	783
10	11630	111.6	94.9	759.5
11	12350	112.596	95.099	748
12	13190	113.787	94.398	722
13	14180	115.134	92.423	678
14	15330	116.6	88.8	642.3
15	16800	118.683	91.405	732
16	18330	120.686	95.713	796
17	19660	122.071	100.364	825
18	20530	122.3	104	844.9
19	20800	121.015	105.59	812
20	20610	118.567	105.404	782
21	20210	115.486	104.042	656
22	19860	112.3	102.1	531.6
23	19800	109.539	100.177	536
24	20290	107.733	98.871	540
25	21560	107.41	98.779	541
26	23860	109.1	100.5	544.9
27	23986	108	101	543.7
28	24567	107	102.8	541.2
29	25322	106.9	103.1	540
30	25689	106.3	103.6	538

Task 5. Using the input data from Task 4 (Table 6) and the Farrar Glauber test, test the econometric model for multicollinearity and, if it is necessary, eliminate it. Perform all calculations in the MS Excel and Statistica 10.0 programs.

Task 6. Check the existence of a linear multiplicity of the relationship between GDP and socioeconomic indicators (Table 7 shows the values for Ukraine in 2005 - 2018).

Construct a multiple regression model and determine all its characteristics. Check the statistical significance of the model parameters, the coefficient of multiple correlation. Calculate the theoretical values of the dependent variable and the model error. Construct a linear function graph with confidence intervals.

Calculate the predictive value of the dependent variable and confidence intervals of the change if the value of the independent indicator is known. Check the adequacy of the model according to Fisher's criterion. Draw conclusions about the adequacy of the constructed multifactorial model, and give an economic interpretation of the model as a whole. The input data are presented in Table 7.

Table 7
The input data for constructing a multifactor econometric model

Years	Production output thou UAH (X1)	Volume of retail turnover of enterprises (legal entities), mln (X2)	Average cost per month per household, UAH (X3)	Direct investments (million dollars) (X4)	The GDP (billion UAH) (Y)
2005	226358	19317	395.6	2063.6	186.5
2006	356842	22151	426.5	2810.7	192.5
2007	373893	28757	541.3	3281.8	198.9
2008	460520	34417	607	3875	221.6
2009	504008	39691	658.3	4555.3	225.8
2010	603704	49994	736.8	5471.8	267.3
2011	809988	67556	903.5	6794.4	345.1
2012	995630	94332	1229.4	9047	441.5
2013	1182179	129952	1442.8	16890	544.2
2014	1565055	178233	1722	21607.3	720.7
2015	2072172	246903	2590.4	29542.7	948.1
2016	1955685	230955	2754.1	35616.4	913.3
2017	2388289	280890	3072.7	40053	1082.6
2018	2496365	350059	3456	44806	1316.6

Task 7. Using the input data from Task 6 (Table 7) and the Farrar Glauber test, test the econometric model for multicollinearity and, if it is necessary, eliminate it. Perform all calculations in the MS Excel and Statistica 10.0 programs.

The list of questions for independent work

1. What problem does the econometric model solve?
2. Give the basic preconditions of the classical linear econometric model.
3. List the main stages of the use of MNCs for a single-factor model.
4. List the properties of a model parameter estimates.
5. What is the effectiveness of the model parameters?
6. What is the peculiarity of constructing a forecast using a regression model?
7. What is multicollinearity in a model?
8. List the steps of which the Farrar - Glauber algorithm is composed.
9. What are the main methods for elimination of multicollinearity?
10. List the stages of implementation of the method of main components.

Topic 3. Modeling and forecasting the development of trends

Task 1. Predict the level of income of the population of Ukraine in 2020. Build a decomposition model: to determine the form of the decomposition model, identify all the components, make a forecast of the trend component, carry out a spectral analysis of the cyclic constituent and check its quality. The input data are presented in Table 8.

Table 8
Total income of the population of Ukraine on a quarterly basis

Period (T)	Incomes of the population, UAH million	Period (T)	Incomes of the population, UAH million
2010, quarter 1	229106	2015, quarter 1	363274
quarter 2	267973	quarter 2	420848
quarter 3	288714	quarter 3	461003
quarter 4	315222	quarter 4	526891
2011, quarter 1	265528	2016, quarter 1	412874
quarter 2	299957	quarter 2	486535
quarter 3	328461	quarter 3	551250
quarter 4	357059	quarter 4	600672
2012, quarter 1	296569	2017, quarter 1	550299
quarter 2	345295	quarter 2	620280
quarter 3	371244	quarter 3	700432
quarter 4	394089	quarter 4	781071
2013, quarter 1	329252	2018, quarter 1	695847
quarter 2	372030	quarter 2	781413
quarter 3	394857	quarter 3	833011
quarter 4	433267	quarter 4	909247
quarter 2	329335	2019, quarter 1	814768
quarter 3	395407	quarter 2	907970
quarter 4	417712	quarter 3	963237
	quarter 4	1013371	

Guidelines

Form a time series and present it as a file in the package Statistica 10.0 (Fig. 9).

	$\begin{aligned} & 1 \\ & T \end{aligned}$	$\begin{gathered} 2 \\ \text { Income } \end{gathered}$
1	1	229106
2	2	267973
3	3	288714
4	4	315222
5	5	265528
6	6	299957
7	7	328461
8	8	357059
9	9	296569
10	10	345295
11	11	371244
12	12	394089
13	13	329252
14	14	372030
15	15	394857
16	16	433267
17	17	329335
18	18	374407
19	19	395314
20	20	417712
21	21	363274
22	22	420848
23	23	461003
24	24	526891
25	25	412874
26	26	486535
27	27	551250
28	28	600672
29	29	550299
30	30	620280
31	31	700432
32	32	781071
33	33	695847
34	34	781413
35	35	833011
36	36	909247
37	37	814768
38	38	907970
3 n	30	กรววาว7

Fig. 9. A fragment of initial data in Statistica 10.0
In order to determine the model of decomposition of the time series components (additive or multiplicative), we present the initial data in the form of a graph (Fig. 10).

Fig. 10. The line plot of income of the population of Ukraine
Visual analysis shows the presence of a positive trend and some seasonality. Since the size of the population's income does not have a constant pronounced tendency to increase or decrease the amplitude of values, the multiplicative time series model should be used, which is presented by formula 1 :

$$
\begin{equation*}
Y=T_{t} \times S_{t} \times C_{t} \times I, \tag{1}
\end{equation*}
$$

where T is a trend component;
C is a cyclic component;
S is a seasonal component;
I is a random component;
T is the analyzed period.
In the case of a constant amplitude of changes in the values of the time series, it is expedient to use the additive model $\left(Y=T_{t}+S_{t}+C_{t}+I\right)$.

To determine the presence of seasonality and the values of the seasonal lag, we use the Time Series Analysis module (Fig. 11).

Fig. 11. The Time Series Analysis module in Statistica 10.0
Then, we need to choose a variable for analysis - the income of the population of Ukraine in the period of 2010-2019 (Fig. 12).

Fig. 12. Choosing the parameters in the Time Series Analysis module
The dialog box for this analysis contains the area where the original and converted time series are stored. The number of copies per row can be set by the user alone (a minimum of 3 is recommended). Your source row is denoted by the locked variable L (Lock). This means that it will always be saved and will not be deleted after all the manipulations.

Confirmations of visual analysis will be performed analytically, namely we will use:

1) autocorrelation analysis;
2) Fourier method.

Autocorrelation analysis helps to identify seasonality and determine seasonal lags of the time series. To do this, click on the button OK (transformation, autocorrelations, crosscorrelations, plots) and select the Autocorrelation tab. Then click on the button Autocorrelations (Fig. 13).

Fig. 13. The steps of autocorrelation analysis
As we can see in Fig. 13, the greatest correlation values fall on the 1st lag, then there is a decline and its maximum autocorrelation coefficient is already achieved on the 4st lag. So in our data, there is a trend and seasonality equal to 4 .

To confirm the presence of seasonality and to show the presence of hidden seasonalities, which could not be determined using the autocorrelation function, we use the Fourier method. To do this, go back to the previous level and click the button tab Spectral (Fourier) analysis (Fig. 14).

Fig. 14. The Fourier method
Here we are interested in one-dimensional (single series) analysis. We select the period to be the X -axis, and present it on the spectral plane (Fig. 15).

Fig. 15. The results of the Fourier method
We've obtained a plot of the spectral density over the period. Obviously, the absolute maximum is reached at the point with lag 4, and there is also a seasonality equal to half a quarter (lag 2). But since the value of the spectral density at this point is smaller, seasonality with lag 4 affects the variability of the data to a greater extent than seasonality with lag 2.

So, using graphical and analytical methods, we got convinced of the presence of a trend-cyclic and seasonal component in the model.

Decomposition of the time series is carried out on the following components: trend-cyclic, seasonal and random.

To do this, select the Seasonal Decomposition tab in the start-up panel of the Advanced Linear / Nonlinear Models / Time Series / Forecasting module and set the seasonal decomposition parameters (Fig. 16).

Fig. 16. Choosing the Time series analysis (TSA)
Specifying the parameters of the seasonal decomposition model, we obtain the following result after clicking on the button Summary: Seasonal decomposition (Fig. 17).

Case	Seasonal Decomposition: Multipl. season (4); Centered means (Spreadsheet6) INCOME						
	INCOME	Moving Averages	Ratios	Seasonal Factors	Adjusted Series	Smoothed Trend-c.	Irreg. Compon.
1	229106			89,3863	256309,8	264434,1	0,969277
2	267973			98,3077	272586,1	269449,7	1,011640
3	288714	279806,5	103,1834	103,3139	279453,3	279481,0	0,999901
4	315222	288357,3	109,3165	108,9921	289215,4	288708,1	1,001757
5	265528	297323,6	89,3061	89,3863	297056,6	297468,9	0,998614
6	299957	307521,6	97,5401	98,3077	305120,7	306904,7	0,994187
7	328461	316631,4	103,7361	103,3139	317925,3	316451,0	1,004659
8	357059	326178,8	109,4673	108,9921	327600,8	326508,8	1,003344
9	296569	337193,9	87,9521	89,3863	331783,3	336699,0	0,985400
10	345295	347170,5	99,4598	98,3077	351239,1	347237,0	1,011526
11	371244	355884,6	104,3158	103,3139	359336,0	355974,3	1,009444
12	394089	363311,9	108,4713	108,9921	361575,7	363307,4	0,995233
13	329252	369605,4	89,0820	89,3863	368347,1	369621,0	0,996553
14	372030	377454,3	98,5629	98,3077	378434,4	377275,3	1,003072
15	394857	382361,9	103,2679	103,3139	382191,6	381697,1	1,001296
16	433267	382669,4	113,2223	108,9921	397521,4	383679,3	1,036077
17	329335	383023,6	85,9829	89,3863	368439,9	380765,9	0,967629
18	374407	381136.4	98,2344	98,3077	380852,3	380608,4	1,000641
19	395314	383434,4	103,0982	103,3139	382634,0	383439,4	0,997899
20	417712	393481,9	106,1579	108,9921	383249,8	392975,5	0,975251
21	363274	407498,1	89,1474	89,3863	406408,8	407862,4	0,996436
22	420848	429356,6	98,0183	98,3077	428092,8	428466,5	0,999128
23	461003	449204,0	102,6266	103,3139	446215,9	447775,9	0,996516
24	526891	463614,9	113,6484	108,9921	483421,2	465499,5	1,038500
25	412874	483106,6	85,4623	89,3863	461898,3	480238,1	0,961811
26	486535	503610,1	96,6095	98,3077	494910,5	501133,4	0,987582
27	551250	530010,9	104,0073	103,3139	533568,2	530032,8	1,006670
28	600672	563907.1	106,5197	108,9921	551115,1	564181, 4	0,976840
29	550299	599273,0	91,8278	89,3863	615641,0	602511.4	1,021792
30	620280	640470,6	96,8475	98,3077	630957,9	638648,0	0,987959
31	700432	681214,0	102,8211	103,3139	677965,1	680353,9	0,996489
32	781071	719549,1	108,5501	108,9921	716630,8	720954,2	0,994003
33	695847	756263,1	92,0112	89,3863	778471,3	760295,7	1,023906
34	781413	788857,5	99,0563	98,3077	794864,8	789442,5	1,006868
35	833011	819744,6	101,6184	103,3139	806291,5	818561,3	0,985010
3F	909247	RFПП 294	1п下 915)	1 R R 9971	87 4 ว719	RFOTF) 7	П 9RПFR?

Fig. 17. A fragment of the results of TSA in Statistica 10.0

At the next stage it is necessary to copy the decomposition results, namely the trend-cyclic, seasonal and random components into the window with the initial data (Fig. 18).

Next, we need to visualize the components of the composition model. To do this, we need to return to the analysis tab, go to the charts and alternately choose the variable we need and press the Plot button (Fig. 19).

	$\begin{aligned} & \hline 1 \\ & \mathrm{~T} \end{aligned}$	$\begin{gathered} 2 \\ \text { Income } \\ \hline \end{gathered}$	3 Smoothed Trend-c.	4 Seasonal Factors	$\begin{gathered} 5 \\ \text { Irreg. Compon. } \end{gathered}$
1	1	229106	264434,1	89,3863	0,969277
2	2	267973	269449,7	98,3077	1,011640
3	3	288714	279481,0	103,3139	0,999901
4	4	315222	288708,1	108,9921	1,001757
5	5	265528	297468,9	89,3863	0,998614
6	6	299957	306904,7	98,3077	0,994187
7	7	328461	316451,0	103,3139	1,004659
8	8	357059	326508,8	108,9921	1,003344
9	9	296569	336699,0	89,3863	0,985400
10	10	345295	347237,0	98,3077	1,011526
11	11	371244	355974,3	103,3139	1,009444
12	12	394089	363307,4	108,9921	0,995233
13	13	329252	369621,0	89,3863	0,996553
14	14	372030	377275,3	98,3077	1,003072
15	15	394857	381697,1	103,3139	1,001296
16	16	433267	383679,3	108,9921	1,036077
17	17	329335	380765,9	89,3863	0,967629
18	18	374407	380608,4	98,3077	1,000641
19	19	395314	383439,4	103,3139	0,997899
20	20	417712	392975,5	108,9921	0,975251
21	21	363274	407862,4	89,3863	0,996436
22	22	420848	428466,5	98,3077	0,999128
23	23	461003	447775,9	103,3139	0,996516
24	24	526891	465499,5	108,9921	1,038500
25	25	412874	480238,1	89,3863	0,961811
26	26	486535	501133,4	98,3077	0,987582
27	27	551250	530032,8	103,3139	1,006670
28	28	600672	564181,4	108,9921	0,976840
29	29	550299	602511,4	89,3863	1,021792
30	30	620280	638648,0	98,3077	0,987959
31	31	700432	680353,9	103,3139	0,996489
32	32	781071	720954,2	108,9921	0,994003
33	33	695847	760295,7	89,3863	1,023906
34	34	781413	789442,5	98,3077	1,006868
35	35	833011	818561,3	103,3139	0,985010
36	36	909247	850752,2	108,9921	0,980582
37	37	814768	887648,3	89,3863	1,026885
38	38	907970	913611,7	98,3077	1,010933
91	7n	กัาาา	monem 7	1 าวาวาก	1 nnamm

Fig. 18. Adding the decomposition components to the file

Fig. 19. Choosing the parameters

Then we need to build a smoothed trend-cycle component (Fig. 20).

Fig. 20. The trend-cycle component
Then we need to build a seasonal component (Fig. 21).

Fig. 21. The seasonal component

Then we need to build a random (irregular) component graph (Fig. 22).

Fig. 22. The random component graph
The next step is to construct a regression model in which the independent variable is time (T) (Fig. 23).

Fig. 23. Choosing the parameters of the single-factor regression model

The simulation results are given in Fig. 24.

$\mathrm{N}=40$	Regression Summary for Dependent Variable: Income (Spreadsheet6) $\mathrm{R}=, 92474573 \mathrm{Rl}=, 85515467$ Adjusted $\mathrm{Rl}=, 85134295$ $F(1,38)=224,35 p<, 00000$ Std. Error of estimate: 84880,						
	$\mathrm{b}^{\text {* }}$	$\begin{gathered} \text { Std. Err. } \\ \text { of } b^{*} \end{gathered}$	b	Std. Err. of b	t(38)	p-value	
Intercept			147999,5	27352,83	5,41076	0,000004	
T	0,924746	0,061739	17414,3	1162,64	14,97828	0,000000	

Fig. 24. The regression model results

So, we got an adequate and quality model that will look like:

$$
\text { V = } 147999.5+17414.3 \times \mathrm{T} .
$$

Next, it is necessary to isolate the trend from the trend-cycle component. To do this, add a new variable with a calculation formula (Fig. 25).

Fig. 25. Adding the trend component

	$\begin{aligned} & 1 \\ & T \end{aligned}$	$\begin{gathered} 2 \\ \text { Income } \end{gathered}$	3 Smoothed Trend－c．	4 Seasonal Factors	5 Irreg．Compon．	$\begin{gathered} 6 \\ \text { Trend } \end{gathered}$
1	1	229106	264434，1	89，3863	0，969277	165413，8
2	2	267973	269449，7	98，3077	1，011640	182828，1
3	3	288714	279481，0	103，3139	0，999901	200242，4
4	4	315222	288708，1	108，9921	1，001757	217656，7
5	5	265528	297468，9	89，3863	0，998614	235071
6	6	299957	306904，7	98，3077	0，994187	252485，3
7	7	328461	316451，0	103，3139	1，004659	269899，6
8	8	357059	326508，8	108，9921	1，003344	287313，9
9	9	296569	336699，0	89，3863	0，985400	304728，2
10	10	345295	347237，0	98，3077	1，011526	322142，5
11	11	371244	355974，3	103，3139	1，009444	339556，8
12	12	394089	363307，4	108，9921	0，995233	356971，1
13	13	329252	369621，0	89，3863	0，996553	374385，4
14	14	372030	377275，3	98，3077	1，003072	391799，7
15	15	394857	381697，1	103，3139	1，001296	409214
16	16	433267	383679，3	108，9921	1，036077	426628，3
17	17	329335	380765，9	89，3863	0，967629	444042，6
18	18	374407	380608，4	98，3077	1，000641	461456，9
19	19	395314	383439，4	103，3139	0，997899	478871，2
20	20	417712	392975，5	108，9921	0，975251	496285，5
21	21	363274	407862，4	89，3863	0，996436	513699，8
22	22	420848	428466，5	98，3077	0，999128	531114，1
23	23	461003	447775，9	103，3139	0，996516	548528，4
24	24	526891	465499，5	108，9921	1，038500	565942，7
25	25	412874	480238，1	89，3863	0，961811	583357
26	26	486535	501133，4	98，3077	0，987582	600771，3
27	27	551250	530032，8	103，3139	1，006670	618185，6
28	28	600672	564181，4	108，9921	0，976840	635599，9
29	29	550299	602511，4	89，3863	1，021792	653014，2
30	30	620280	638648，0	98，3077	0，987959	670428，5
31	31	700432	680353，9	103，3139	0，996489	687842，8
32	32	781071	720954，2	108，9921	0，994003	705257，1
33	33	695847	760295，7	89，3863	1，023906	722671．4
34	34	781413	789442，5	98，3077	1，006868	740085，7
35	35	833011	818561，3	103，3139	0，985010	757500
36	36	909247	850752，2	108，9921	0，980582	774914，3
37	37	814768	887648，3	89，3863	1，026885	792328，6
38	38	907970	913611，7	98，3077	1，010933	809742，9
7n	าก	กัาาาง	nanron 7	1กา フ1าก	1 nกxama	กาフィг7

Fig．25．（the end）

It is necessary to build（visualize）a trend component（Fig．26）．
The values of the cycle component are then calculated as follows：
Cycle＝Smoothed Trend－C／Trend（Fig．27）．
The window for entering a new variable is given in Fig． 28.
The graph of the cyclic component is presented in Fig． 29.

Fig. 26. Visualization of the trend component

Fig. 27. Adding the cycle component

	$\begin{aligned} & 1 \\ & T \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ \text { Income } \end{gathered}$	Smoothed Trend-c.	$\stackrel{4}{4}$ Seasonal Factors	$\begin{gathered} 5 \\ \text { Irreg. Compon. } \end{gathered}$	$\begin{gathered} 6 \\ \text { Trend } \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \text { Cycle } \end{gathered}$
1	1	229106	264434,1	89,3863	0,969277	165413,8	1,59862161
2	2	267973	269449,7	98,3077	1,011640	182828,1	1,47378725
3	3	288714	279481,0	103,3139	0,999901	200242,4	1,39571349
4	4	315222	288708,1	108,9921	1,001757	217656,7	1,32643779
5	5	265528	297468,9	89,3863	0,998614	235071	1,26544295
6	6	299957	306904,7	98,3077	0,994187	252485,3	1,21553479
7	7	328461	316451,0	103,3139	1,004659	269899,6	1,17247664
8	8	357059	326508,8	108,9921	1,003344	287313,9	1,1364185
9	9	296569	336699,0	89,3863	0,985400	304728,2	1,10491588
10	10	345295	347237,0	98,3077	1,011526	322142,5	1,07789864
11	11	371244	355974,3	103,3139	1,009444	339556, 8	1,04834964
12	12	394089	363307,4	108,9921	0,995233	356971,1	1,01775027
13	13	329252	369621,0	89,3863	0,996553	374385,4	0,987274112
14	14	372030	377275,3	98,3077	1,003072	391799,7	0,962929021
15	15	394857	381697,1	103,3139	1,001296	409214	0,932756604
16	16	433267	383679,3	108,9921	1,036077	426628,3	0,899329338
17	17	329335	380765,9	89,3863	0,967629	444042,6	0,857498532
18	18	374407	380608,4	98,3077	1,000641	461456,9	0,824797363
19	19	395314	383439,4	103,3139	0,997899	478871,2	0,800715146
20	20	417712	392975,5	108,9921	0,975251	496285,5	0,791833629
21	21	363274	407862,4	89,3863	0,996436	513699,8	0,793970299
22	22	420848	428466,5	98,3077	0,999128	531114,1	0,806731615
23	23	461003	447775,9	103,3139	0,996516	548528,4	0,816322148
24	24	526891	465499,5	108,9921	1,038500	565942,7	0,82252054
25	25	412874	480238,1	89,3863	0,961811	583357	0,82323185
26	26	486535	501133,4	98,3077	0,987582	600771,3	0,834150097
27	27	551250	530032,8	103,3139	1,006670	618185,6	0,857400758
28	28	600672	564181,4	108,9921	0,976840	635599,9	0,88763601
29	29	550299	602511,4	89,3863	1,021792	653014,2	0,922661981
30	30	620280	638648,0	98,3077	0,987959	670428,5	0,952596699
31	31	700432	680353,9	103,3139	0,996489	687842,8	0,989112439
32	32	781071	720954,2	108,9921	0,994003	705257,1	1,02225724
33	33	695847	760295,7	89,3863	1,023906	722671,4	1,05206282
34	34	781413	789442,5	98,3077	1,006868	740085,7	1,06669065
35	35	833011	818561,3	103,3139	0,985010	757500	1,08060901
36	36	909247	850752,2	108,9921	0,980582	774914,3	1,09786615
37	37	814768	887648,3	89,3863	1,026885	792328,6	1,12030329
38	38	907970	913611,7	98,3077	1,010933	809742,9	1,12827376

Fig. 28. The results of adding the cycle component

Fig. 29. Visualization of the cycle component

Before proceeding to forecasting the income for 1 year (4 quartiles = = 4 periods) ahead using the time series decomposition model, it is necessary to perform a number of actions:

- add 4 observations after the last one available in the series;
- in the data column T (time period), enter the corresponding ordinal numbers, continuing the series;
- in the column Seasonal Factors, enter the corresponding values of the seasonal components;
- in the Cycle column, enter the corresponding cyclic component values, taking into account the cycle period;
- in the Trend column set the data recalculation (Fig. 30).

	$\begin{aligned} & \hline 1 \\ & \mathrm{~T} \end{aligned}$	$\begin{gathered} \hline 2 \\ \text { Income } \end{gathered}$	$\stackrel{3}{3}$ Smoothed Trend-c.	$\begin{gathered} 4 \\ \hline \hline \text { Seasonal Factors } \end{gathered}$	$\begin{gathered} 5 \\ \text { Irreg. Compon. } \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { Trend } \end{gathered}$	$\begin{gathered} 7 \\ \text { Cycle } \end{gathered}$
8	8	357059	326508,8	108,9921	1,003344	287313,9	1,1364185
9	9	296569	336699,0	89,3863	0,985400	304728,2	1,10491588
10	10	345295	347237,0	98,3077	1,011526	322142,5	1,07789864
11	11	371244	355974,3	103,3139	1,009444	339556,8	1,04834964
12	12	394089	363307,4	108,9921	0,995233	356971,1	1,01775027
13	13	329252	369621,0	89,3863	0,996553	374385,4	0,987274112
14	14	372030	377275,3	98,3077	1,003072	391799,7	0,962929021
15	15	394857	381697,1	103,3139	1,001296	409214	0,932756604
16	16	433267	383679,3	108,9921	1,036077	426628,3	0,899329338
17	17	329335	380765,9	89,3863	0,967629	444042,6	0,857498532
18	18	374407	380608,4	98,3077	1,000641	461456,9	0,824797363
19	19	395314	383439,4	103,3139	0,997899	478871,2	0,800715146
20	20	417712	392975,5	108,9921	0,975251	496285,5	0,791833629
21	21	363274	407862,4	89,3863	0,996436	513699,8	0,793970299
22	22	420848	428466,5	98,3077	0,999128	531114,1	0,806731615
23	23	461003	447775,9	103,3139	0,996516	548528,4	0,816322148
24	24	526891	465499,5	108,9921	1,038500	565942,7	0,82252054
25	25	412874	480238,1	89,3863	0,961811	583357	0,82323185
26	26	486535	501133,4	98,3077	0,987582	600771,3	0,834150097
27	27	551250	530032,8	103,3139	1,006670	618185,6	0,857400758
28	28	600672	564181,4	108,9921	0,976840	635599,9	0,88763601
29	29	550299	602511,4	89,3863	1,021792	653014,2	0,922661981
30	30	620280	638648,0	98,3077	0,987959	670428,5	0,952596699
31	31	700432	680353,9	103,3139	0,996489	687842,8	0,989112439
32	32	781071	720954,2	108,9921	0,994003	705257,1	1,02225724
33	33	695847	760295,7	89,3863	1,023906	722671,4	1,05206282
34	34	781413	789442,5	98,3077	1,006868	740085,7	1,06669065
35	35	833011	818561,3	103,3139	0,985010	757500	1,08060901
36	36	909247	850752,2	108,9921	0,980582	774914,3	1,09786615
37	37	814768	887648,3	89,3863	1,026885	792328,6	1,12030329
38	38	907970	913611, 7	98,3077	1,010933	809742,9	1,12827376
39	39	963237	928568,7	103,3139	1,004062	827157,2	1,1226025
40	40	1013371	936047,3	108,9921	0,993289	844571,5	1,10831029
41	41			89,3863		861985,8	1,12030329
42	42			98,3077		879400,1	1,12827376
43	43			103,3139		896814,4	1,1226025
44	44			108,9921		914228,7	1,10831029

Fig. 30. The steps of the analysis

Then we need to add a new variable - the Income predict (Fig. 31, 32).

Fig. 31. Adding the Income predict
Then you can calculate the forecast values of the income indicator in 4 steps forward by specifying a model of the form:

$$
\text { Income predict }=\text { Trend } \times \text { Cycle } \times \text { Seasonal Factors } / 100 .
$$

	$\begin{aligned} & 1 \\ & \mathrm{~T} \end{aligned}$	$\begin{gathered} 2 \\ \text { Income } \end{gathered}$	$\begin{gathered} 3 \\ \text { Smoothed Trend-c. } \end{gathered}$	Seasonal Factors	Irreg. Compon.	$\begin{gathered} 6 \\ \text { Trend } \end{gathered}$	$\begin{gathered} 7 \\ \text { Cycle } \end{gathered}$	8 Income predict
8	8	357059	326508,8	108,9921	1,003344	287313,9	1,1364185	355868,87
9	9	296569	336699,0	89,3863	0,985400	304728,2	1,10491588	300962,95
10	10	345295	347237,0	98,3077	1,011526	322142,5	1,07789864	341360,554
11	11	371244	355974,3	103,3139	1,009444	339556,8	1,04834964	367770,804
12	12	394089	363307,4	108,9921	0,995233	356971,1	1,01775027	395976,444
13	13	329252	369621,0	89,3863	0,996553	374385,4	0,987274112	330390,711
14	14	372030	377275,3	98,3077	1,003072	391799,7	0,962929021	370890,543
15	15	394857	381697,1	103,3139	1,001296	409214	0,932756604	394346,037
16	16	433267	383679,3	108,9921	1,036077	426628,3	0,899329338	418180,221
17	17	329335	380765,9	89,3863	0,967629	444042,6	0,857498532	340352,698
18	18	374407	380608,4	98,3077	1,000641	461456,9	0,824797363	374167,269
19	19	395314	383439,4	103,3139	0,997899	478871,2	0,800715146	396146,139
20	20	417712	392975,5	108,9921	0,975251	496285,5	0,791833629	428312,348
21	21	363274	407862,4	89,3863	0,996436	513699,8	0,793970299	364573,274
22	22	420848	428466,5	98,3077	0,999128	531114,1	0,806731615	421215,451
23	23	461003	447775,9	103,3139	0,996516	548528,4	0,816322148	462614,63
24	24	526891	465499,5	108,9921	1,038500	565942,7	0,82252054	507357,729
25	25	412874	480238,1	89,3863	0,961811	583357	0,82323185	429267,247
26	26	486535	501133,4	98,3077	0,987582	600771,3	0,834150097	492652,587
27	27	551250	530032,8	103,3139	1,006670	618185,6	0,857400758	547597,444
28	28	600672	564181,4	108,9921	0,976840	635599,9	0,88763601	614913,176
29	29	550299	602511,4	89,3863	1,021792	653014,2	0,922661981	538562,892
30	30	620280	638648,0	98,3077	0,987959	670428,5	0,952596699	627839,919
31	31	700432	680353,9	103,3139	0,996489	687842,8	0,989112439	702899,969
32	32	781071	720954,2	108,9921	0,994003	705257,1	1,02225724	785783,183
33	33	695847	760295,7	89,3863	1,023906	722671.4	1,05206282	679600,539
34	34	781413	789442,5	98,3077	1,006868	740085,7	1,06669065	776082,494
35	35	833011	818561,3	103,3139	0,985010	757500	1,08060901	845687, 453
36	36	909247	850752,2	108,9921	0,980582	774914,3	1,09786615	927252,763
37	37	814768	887648,3	89,3863	1,026885	792328,6	1,12030329	793436,398
38	38	907970	913611,7	98,3077	1,010933	809742,9	1,12827376	898150,308
39	39	963237	928568,7	103,3139	1,004062	827157,2	1,1226025	959340,382
40	40	1013371	936047,3	108,9921	0,993289	844571,5	1,10831029	1020217.7
41	41			89,3863		861985,8	1,12030329	863190,989
42	42			98,3077		879400,1	1,12827376	975412,653
43	43			103,3139		896814,4	1,1226025	1040129,09
44	44			108,9921		914228,7	1,10831029	1104361,56

Fig. 32. The results of adding the Income predict

Let's build a graph of the income predict (Fig. 33).

Fig. 33. Visualization of the income predict
Fig. 34 shows the histogram of error distribution (visualization of the irregular component with the help of the menu Graphs of Block Data / Histogram: Block Columns). The fact that this distribution is close to the normal law is a confirmation of the adequacy of the model and the accuracy of the forecast:

Fig. 34. The histogram of the income predict with the curve of normal distribution

To confirm the quality of the forecast，we calculate the average absolute percentage error by formula 2 ：

$$
\begin{equation*}
\text { MAPE }=\frac{1}{n} \times \sum \frac{|y-\bar{y}|}{y} \times 100 \%, \tag{2}
\end{equation*}
$$

where n is the number of cases（periods）；
y is the analyzed value；
\bar{y} is the predicted value．
MAPE is a measure of the bias of the forecast（predicted errors of the time series）．If MAPE $<10 \%$ ，this will indicate a high accuracy of the constructed forecast．

Calculations can be performed in MS Excel（Fig．35）．

E43				$=(\mathrm{E} 42 / 40)^{*} 100$	
4	A	B	c	D	E
1	Income（y）	Income predict（ypr）	$(y-y p r)$	ABS	（y－ypryy
2	229106	236367，9531	－7261，95	7261，953	0，031696914
3	267973	264889，7342	3083，266	3083，266	0，011506882
4	288714	288742，6797	－W，6797	袚，679\％	9，9336E－05
5	315222	314669，0236	552，9764	552，9764	0，001754244
6	265528	265896，6102	－36，61	36，6102	0，001388216
7	299957	301710.8131	－1753，81	1753，813	0，006846882
8	328461	326937．7774	1523，223	1523， 223	0，004637453
9	357059	355868，8699	1190，13	1190，13	0，003333147
10	296569	300962，9501	－4393，95	4393，95	0，014815945
11	345295	341360，5537	3934，446	3934，446	0，011394449
12	371244	367770，804	3473，196	3473，196	0，009 555661
13	394089	395976．4437	－1887，44	1887，444	0，004789384
14	329252	330390.7109	－1138，71	113，711	0，003458478
15	372030	370890，5433	1139，457	1139，457	0，00306及09
16	394857	394346，0373	510，9677	510，9677	0，001294045
17	433267	418180，2214	15086，78	15086，78	0，034820973
18	329335	340352，6979	－11017，7	110017，7	0，033454379
19	374407	374167，2686	239，7314	239，7314	0，000640296
20	395314	396146，1387	－832，139	832，137	0，002106007
21	417712	428312，3481	$-10600,3$	10600， 5 \％	0，05377169
22	363274	364573，2742	－1299，77	1299， 774	0，00376\％
23	420848	421215.4507	－367，451	367，4507	0，00087312
24	461003	462614，6298	－1611，63	1611，63	0，00349592
Z	526891	507357．7287	19533，27	19533， 77	0，037072699
26	412874	429267．247	－16393，2	16393， 5	0，039706206
27	486535	492652，5869	－6117，59	6117，587	0，01573786
㶪	551250	547597，4443	3世2，556	3ळ2，556	0，00665951
29	600672	614913，1762	－14241，2	14241，18	0，02370874
30	550299	538562，8916	11736，11	11736，11	0，021326785
31	620280	627839,9195	－7559，92	7559，919	0，012187914
32	700432	702899，9687	－2467，97	2467，969	0，003 23495
33	781071	785783，1833	－4712，18	4712，183	0，006032977
34	695847	679600，5394	16246，46	16246，46	0，023347748
5	781413	776082．4941	5330，506	5330，506	0，006821624
36	833011	845687，4532	－12676，5	12676，45	0，001521763
37	909247	927252，7629	－18006，8	18006，76	0，019802939
38	814768	793436，3979	21331，6	21331，6	0，026181198
39	907970	898150，3079	9819，692	9819，692	0，010814996
40	963237	959340，3823	3896，618	3896，618	0，004045336
41	1013371	1020217．697	－6846，7	6846，697	0，00675657
42				Sum	0，488521561
43				MAPE	1，221303904
44					

Fig．35．Calculations of the MAPE

The average absolute percentage error is 1.221%, which is confirmed by the accuracy of the forecast for this multiplicative time series model.

As an output, it is necessary to give an economic interpretation of the results of forecasting, i.e. say what will happen with the population income in 2020.

Task 2. Using your own research information space and analytical functions of the program Statistica 10.0, build a forecast for $2-3$ periods ahead and provide an economic interpretation of the results.

Task 3. Build a forecast of the country's export volume (Table 9) for 4 periods ahead:

1. Determine the form of the decomposition model.
2. Identify all components of the decomposition model.
3. Forecast the trend component.
4. Carry out a spectral analysis of the cyclic constituent.
5. Check the quality of the decomposition model.
6. Formulate conclusions.

Table 9
The input data

Period	Export, mln UAH	Import, mln UAH	Period	Export, mln UAH	Import, mln UAH
1	2339402.7	2712852.43	19	4258746.5	5315298.1
2	2518534.3	3171353.67	20	4167498.9	4872915.4
3	3129139.2	3872083.7	21	4114710.7	4851865.6
4	2953856.7	3283634.6	22	4345291.8	5872680.3
5	3104624.5	3632466	23	4450168.3	5822204
6	3317653.5	3610201.2	24	4799157.8	6628819.8
7	3344490.8	3686831.1	25	3663214.9	4627526.5
8	3511110.9	3839422.4	26	4682418.3	646557.5
9	3676317.9	4147061.3	27	5444491.8	7712994.2
10	3437449.5	4021637.6	28	5571314.2	7936247.4
11	3344121.8	3922054	29	6284581.1	7710564
12	3691002.6	5134893.1	30	6896161.2	7934961.4
13	3208484.9	3700647.9	31	7616856.6	8822925.9
14	3409760.2	4297569.8	32	6718135.9	8155969.3
15	4108205.4	4953434.5	33	6685131.4	8479144.1
16	4067299.9	4820236.3	34	5861332.6	7647194.6
17	4083445.1	4852211.6	35	3622525.2	5264462.7
18	4235294.1	4682039.7	36	4287044.3	5908471.9

Task 4. Build a forecast of the country's import volume (Table 9) for 4 periods ahead:

1. Determine the form of the decomposition model.
2. Identify all components of the decomposition model.
3. Forecast the trend component.
4. Carry out a spectral analysis of the cyclic constituent.
5. Check the quality of the decomposition model.
6. Formulate conclusions.

Task 5. Compare the results of the forecasting of the country's import and export volume. Explain the changes. How does the government foreign and domestic economic policy affect these areas?

Task 6. Using the statistical data of the website of the State Statistics Service of Ukraine [19], find information on the amount of capital investment (on a quarterly basis) and build a forecast for 1 year ahead (4 periods) using the module "Analysis of time series module" of the program Statistica 10.0.

Task 7. Using the statistical data of the website of the State Statistics Service of Ukraine [19], find information on the amount of the GDP (on a quarterly basis) and build a forecast for 5 years ahead using the module "Analysis of time series module" of the program Statistica 10.0.

The list of questions for independent work

1. What is the time series of spatial differences?
2. What types of time series are there?
3. How is the Durbin - Watson method used to study autocorrelation?
4. What is the definition of a stationary time series in the broadest sense?
5. What are the methods of stationary research?
6. In what case are additive and multiplicative models used?
7. List the antialiasing models.
8. What are the main stages of the Foster - Stewart method?
9. What are the main steps for constructing a decomposition model?
10. What methods are used to check the forecast quality?

Topic 4. Models of adaptive forecasting and an integrated model of autoregression

Task 1. Carry out smoothing of the time series by the method of exponential smoothing with different values of parameters. Give graphs of the
smoothed data and the corresponding forecast values of the indicator. Build a forecast of changes in investment in the USA IT sector for 1 period ahead (the initial data are presented in Table 10). Evaluate the quality of the time series models (mean error, mean absolute error, standard deviation of errors, mean percentage error, mean absolute percentage error). Perform a comparative analysis of the models and determine the most adequate of them.

Provide an economic interpretation of the results.
Table 10

The input data

Period	Investments in the USA IT sector, billion dollars	Period	Investments in the USA IT sector, billion dollars
2014	380	2017	470
	420		430
	400		450
	480		480
2015	350	2018	490
	400		470
	450		490
	480	2019	478
2016	370		520
	450		490
	400		510
	420		410

Guidelines

1. As always, we start by creating a source file in Statistica 10.0. To do this, specify the number of variables (2) and the objects of study (24 cases) (Fig. 36).

Let's build a graph of the original data.
To plot the source data, select the Scatterplots sub-item in the Graph items menu. When setting the characteristics of the graph, select Graph type Regular, go to the Advanced tab, and select the trend type - Polynomial. As variables displayed on the graph, select the period of time T for the X -axis and the investments for the Y -axis. The result is shown in Fig. 37, 38.

The choice out of the two main models of the time series decomposition additive or multiplicative - is carried out using graphical analysis. The following rule is used for choosing a particular model: if the initial data have a constantly increasing or decreasing amplitude of oscillations of values, it is advisable to use
a multiplicative model of decomposition; in the case of a constant amplitude of changes, it is advisable to use an additive model.

III Data: Spreadsheet2* (... \square 回		
	$\begin{aligned} & 1 \\ & T \end{aligned}$	2 Investments
1	1	380
2	2	420
3	3	400
4	4	480
5	5	350
6	6	400
7	7	450
8	8	480
9	9	370
10	10	450
11	11	400
12	12	420
13	13	470
14	14	430
15	15	450
16	16	480
17	17	490
18	18	470
19	19	490
20	20	478
21	21	520
22	22	490
23	23	510
24	24	410

Fig. 36. The input data in Statistica 10.0

Fig. 37. Choosing the parameters of the graph

Fig. 38. The graph of the initial data

In our case (see Fig. 38), the graphical analysis allows us to conclude about the multiplicative nature of the relationship between the components.
2. Time series analysis is performed in the module Statistics / Advanced Linear / Nonlinear Models / Time Series / Forecasting (Time series / Forecasting).

First, it is necessary to perform exponential smoothing of the original data. To do this, select the tab Exponential smoothing and forecasting.

In the next window, you need to set the parameters of exponential smoothing. Thus, the variable for analysis is investments, seasonal component lag (Seasonal component 4) since the data are presented on a quarterly basis). The choice of the model type is based on a preliminary visual analysis of the graph of the original data (see Fig. 38). We also specify the forecasting period 4 (build a forecast for 1 year (4 quarters) ahead) (Fig. 39).

Fig. 39. Choosing the exponential smoothing parameters

In the Grid search tab, we perform the process of finding and adjusting antialiasing parameters to determine the optimal values for this model. This is important because the performance of the entire model is based on the set values of the smoothing parameters. To do this, click the Perform grid search button (Fig. 40).

Fig. 40. Launching the Grid Search function
The result is a window of smoothing parameters for a given model (Fig. 41).

	Parameter grid search (Smallest abs. errors are highlighted) (Spreadsheet2) Model: Linear trend, mult.season(4); $S 0=413,8 \mathrm{TO}=3,125$ Investments								
Model Number	Alpha	Delta	Gamma	Mean Error	Mean Abs Error	Sums of Squares	Mean Squares	Mean \% Error	Mean Abs \% Error
55	0,100000	0,700000	0,100000	-0,58738	31,76008	38662,66	1610,944	-0,724574	7,339645
46	0,100000	0,600000	0,100000	-0,38309	32,18055	38830,81	1617,950	-0,708147	7,429816
64	0,100000	0,800000	0,100000	-0,81275	31,57947	38909,41	1621,226	-0,747346	7,306403
56	0,100000	0,700000	0,200000	-0,79908	31,55987	39326,03	1638,585	-0,755383	7,299716
37	0,100000	0,500000	0,100000	-0,20455	32,63499	39327,17	1638,632	-0,698576	7,528634
65	0,100000	0,800000	0,200000	-1,08972	31,38818	39534,31	1647,263	-0,792793	7,275080
47	0,100000	0,600000	0,200000	-0,51348	32,01615	39562,86	1648,452	-0,720953	7,397033
73	0,100000	0,900000	0,100000	-1,04822	32,09500	39614,71	1650,613	-0,774334	7,439149
1	0,100000	0,100000	0,100000	0,42138	33,26867	39887,18	1661,966	-0,668662	7,689169
57	0,100000	0,700000	0,300000	-1,25829	31,32592	39961,16	1665,048	-0,840264	7,254093

Fig. 41. The smoothing parameters

The researcher chooses the combination of exponential smoothing parameters that has the lowest value of the mean absolute percentage error (MAPE < 15%). Thus, in our case, the best forecast will be in the combination of parameters (coefficients) of the model No. 57, namely Alpha $=0.1$; Delta $=0.7$; Phi $=0.3$.

In the next step, set these parameters in the Automatic search tab, set one of the criteria for selecting the best results (Lack of fit indicator) - mean squared error, mean absolute error, MAPE. Choose the MAPE (Fig. 42).

Fig. 42. Setting the parameters of exponential smoothing

After clicking the Automatic estimation button, we get 3 groups of results at the same time:
graphs of initial data, smoothed and forecast, and model residues (Fig. 43);
a table with the original data, smoothed data (Smoothed Series), balances (Resids) and seasonal components (Seasonal Factors) (Fig. 44); a model quality assessment table (Fig. 45).

Fig. 43. The graphs of exponential smoothing results

Case	Exp. smoothing: Multipl. season (4) $\mathrm{SO}=413,8 \mathrm{T0}=3,125$ (Spreadsheet2) Lin.trend,mult.season; Alpha=, ,093 Delta=,736 Gamma=,293 Investments				
	Investments	Smoothed Series	Resids	Seasonal Factors	
1	380,0000	408,1278	-28,1278	97,9017	
2	420,0000	404,9445	15,0555	97,2150	
3	400,0000	422,6969	-22,6969	100,4628	
4	480,0000	439,3979	40,6021	104,4204	
5	350,0000	399,2634	-49,2634		
6	400,0000	422,8694	-22,8694		
7	450,0000	410,1276	39,8724		
8	480,0000	476,0142	3,9858		
9	370,0000	369,9911	0,0089		
10	450,0000	417,2899	32,7101		
11	400,0000	454,6702	-54,6702		
12	420,0000	488,0798	-68,0798		
13	470,0000	370,2060	99,7940		
14	430,0000	451,1693	-21,1693		
15	450,0000	423,8799	26,1201		
16	480,0000	457,8286	22,1714		
17	490,0000	462,6941	27,3059		
18	470,0000	457,0578	12,9422		
19	490,0000	467,0061	22,9939		
20	478,0000	501,8316	-23,8316		
21	520,0000	507,0045	12,9955		
22	490,0000	489,9755	0,0245		
23	510,0000	506,2171	3,7829		
24	410,0000	507,5345	-97,5345		
25		528,8868			
26		498,7118			
27		515,0972			
28		444,0739			

Fig. 44. The results of the forecast

Fig. 45. The table of quality estimates of the model of exponential smoothing

Thus, according to the results of the forward forecast, the forecast values of the volume of investments in the USA IT sector for the next year have been obtained. The obtained values indicate an unstable trend of changes in investment between quarters. The quality of the prognosis is confirmed by low values of model errors (see Fig. 45).

Task 2. Build a model of the impact of socioeconomic indicators on the country's GDP (Table 11) and check the model for the presence of autocorrelation.

Table 11
The initial data

Years	Production output, thousand UAH $(\mathrm{X} 1)$	Volume of retail trade turnover of enterprises, mln UAH (X2)	Total expenditures on average per month per household, UAH $($ X3 $)$	Direct investment, million dollars $(\mathrm{X} 4)$	GDP, billion UAH (Y)
1998	226358	19317	395.6	2063.6	186.5
1999	356842	22151	426.5	2810.7	192.5
2000	373893	28757	541.3	3281.8	198.9
2001	460520	34417	607	3875	221.6
2002	504008	39691	658.3	4555.3	225.8
2003	603704	49994	736.8	5471.8	267.3
2004	809988	67556	903.5	6794.4	345.1
2005	995630	94332	1229.4	9047	441.5
2006	1182179	129952	1442.8	16890	544.2
2007	1565055	178233	1722	21607.3	720.7
2008	2072172	246903	2590.4	29542.7	948.1
2009	1955685	230955	2754.1	35616.4	913.3
2010	2388289	280890	3072.7	40053	1082.6
2011	2496365	350059	3456	44806	1316.6

Guidelines

2.1. Construction of a multifactor econometric model.

The Multiple Regression module is provided in the Statistica package for the construction and comprehensive analysis of multiple linear econometric models. To start the calculation procedures, you must enter the menu item Statistics / Multiple Regression. In the start panel of this module, it is necessary to set variables for the analysis. The results of constructing a linear econometric model are presented in the dialog box (Fig. 46). At the top of the window, basic information about the model is contained, at the bottom, there are the function buttons that allow you to comprehensively view the results of the analysis.

Fig. 46. The window of the results of regression analysis

By initiating the Summary: Regression results button, we will determine the most significant characteristics of the model and the degree of its adequacy (Fig. 47).

$\mathrm{N}=14$	$\begin{aligned} & \text { Regression Summary for Dependent Variable: Y (Spreadsheet2) } \\ & R=, 99970109 \mathrm{Rl}=99940228 \text { Adjusted } \mathrm{Rl}=99913662 \\ & \mathrm{~F}(4,9)=3762,0 \mathrm{p}<, 00000 \text { Std. Error of estimate: } 11,293 \end{aligned}$					
	$\mathrm{b}^{\text {* }}$	$\begin{aligned} & \text { Std. Err. } \\ & \text { of } \mathrm{b}^{*} \end{aligned}$	b	Std.Err. of b	t(9)	p-value
Intercept			104,8863	11,93802	8,78590	0,000010
$\times 1$	-0,022602	0,073626	-0,0000	0,00004	-0,30699	0,765837
$\times 2$	0,955608	0,082814	0,0033	0,00029	11,53916	0,000001
$\times 3$	0,036765	0,111982	0,0132	0,04019	0,32831	0,750184
X4	0,030262	0,081871	0,0008	0,00205	0,36963	0,720203

Fig. 47. The results of regression analysis
Based on the analysis of the obtained results, we note that this model is generally adequate and of high quality, but the parameters for $\mathrm{X} 1, \mathrm{X} 3$ and X4 are not significant.
2.2. Check the model for autocorrelation.

An important prerequisite for constructing a qualitative regression model using the least squares method is the independence of the values of random deviations ε_{i} from the values of deviations in all other observations. The absence of dependence guarantees the absence of correlation between any deviations $\left(\sigma\left(\varepsilon_{i}, \varepsilon_{j}\right)=\operatorname{cov}\left(\varepsilon_{\mathrm{i}}, \varepsilon_{\mathrm{j}}=0\right.\right.$ at $\left.\mathrm{i} \neq \mathrm{j}\right)$ and, in particular, between adjacent deviations $\left(\sigma\left(\varepsilon_{i-1}, \varepsilon_{j}\right)=0\right), \mathrm{i}=2,3, \ldots, n$.

Autocorrelation (sequential correlation) is defined as the correlation between the observed indicators, ordered in time (time series) or in space (cross-data). Autocorrelation of residues (deviations) is usually found in regression analysis using time series data. If cross-data are used, the presence of autocorrelation (spatial correlation) is extremely rare.

Among the main reasons that cause the appearance of autocorrelation, we can highlight specification errors; inertia (cyclicity); cobweb effect (presence of a time lag); data smoothing.

The presence of autocorrelation is determined using the following criteria:

- the Durbin - Watson criterion;
- the Von Neumann criteria;
- the non-cyclic autocorrelation criterion;
- the cyclic autocorrelation criterion.
2.3. Calculation of the Durbin - Watson criterion.

To determine the Durbin - Watson coefficient (the Durbin - Watson statistics), to assess the presence of autocorrelation in the model residues in the error analysis menu, initiate the Perform residual analysis button (Fig. 48).

Fig. 48. The error analysis menu
In the error analysis menu, initiating the Durbin - Watson statistic button (Fig. 49), we get the value of autocorrelation of model errors by the Durbin Watson criterion and the value of noncyclic autocorrelation coefficient (it expresses the degree of the interrelation of series).

Fig. 49. The error analysis module

The result of the calculation of the Durbin - Watson coefficient is shown in Fig. 50.

	Durbin-Watson d (Spreadsheet2) and serial correlation of residuals	
	Durbin-	Serial Watson d Corr.
Estimate	1,595394	0,124147

Fig. 50. The result of the calculation of the Durbin - Watson test using the Statistica 10.0 package

The critical values of the criterion for the number of observations $n=14$, degrees of freedom (number of regressors) $k=4$ and significance levels $\alpha=0.05$ are equal to $\mathrm{dl}=0.69$, $\mathrm{du}=1.97$.

Conclusions are formed according to the following scheme:

1) if $0<D W<d l$, there is a positive autocorrelation of residues;
2) if $\mathrm{dl} \leq \mathrm{DW} \leq \mathrm{du}$, a conclusion about the presence of autocorrelation is not determined (uncertainty zone);
3) if du < DW $<4-\mathrm{du}$, there is no autocorrelation;
4) if $4-\mathrm{du} \leq \mathrm{DW} \leq 4-\mathrm{dl}$, a conclusion about the presence of autocorrelation is not determined;
5) if $4-\mathrm{dl}<\mathrm{DW}<4$, there is a negative autocorrelation of residues.

That is $0.69<1.595<1.97$ ($\mathrm{dl}<\mathrm{d}<\mathrm{du}$), which indicates that the calculated value of the criterion is in the zone of uncertainty, and the use of one criterion is not enough.

The cyclic correlation coefficient (Serial Corr.) is 0.124 . In fact, the calculated value of the cyclic autocorrelation coefficient is compared with the tabular value for the selected level of significance α and the length of the series n . If $|\mathrm{r}|<\mid \mathrm{r}_{5} \%$ table \mid, we accept the hypothesis of non-autocorrelation of residues ε_{t}; if $|r|>\mid r_{1 \%}$ table \mid, we reject the hypothesis of their nonautocorrelation.

Therefore, it is difficult to draw an unambiguous conclusion about the presence of autocorrelation of the model residues.
2.4. Elimination of autocorrelation by the Aitken's method.

In case of autocorrelation of residues, the model parameters can be determined by the Aitken method.

Aitken's method differs from the usual least squares method in that the matrix of parameters is used to estimate the parameters of the model, which
reflects the adjustment of the original data for the variability of the variance. The parameters of the model are determined by formulas 3 and 4 :

$$
\begin{gather*}
a=\left(X^{\top} \times \Omega^{-1} \times X\right)^{-1} X^{\top} \times \Omega^{-1} \times Y ; \tag{3}\\
\Omega^{-1}=\frac{1}{1-p^{2}}\left(\begin{array}{ccccccc}
1 & -p & 0 & 0 & 0 & \ldots & 0 \\
-\rho & 1+\rho^{2} & -\rho & 0 & 0 & \ldots & 0 \\
0 & -\rho & 1+\rho^{2} & -\rho & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots & 1
\end{array}\right) . \tag{4}
\end{gather*}
$$

In practice, to calculate ρ, the following relation is used to determine the cyclic correlation coefficient (formula 5):

$$
\begin{equation*}
\rho \approx r^{0} \approx \frac{\sum_{t=1}^{n} u_{t} \times u_{t-1}}{\sum_{t=1}^{n}\left(u_{t}\right)^{2}} . \tag{5}
\end{equation*}
$$

As can be seen from the calculations in Fig. 50, the value of the cyclic correlation coefficient is 0.124 , so the parameter $\rho=0.124$.

To eliminate autocorrelation in the model, it is proposed to use the Aitken method. Further calculations are performed in MS Excel, using built-in functions.

We present the following calculation algorithm:

1. Define the matrix Ω.
2. Calculate the inverse matrix Ω^{-1}.
3. Multiply the matrix X^{\top} by Ω^{-1}, where X^{\top} is the matrix transposed to the matrix of independent variables X.
4. Find the product of $X^{\top} \Omega^{-1} X$.
5. Calculate the inverse matrix $\left(X^{\top} \Omega^{-1} X\right)^{-1}$ and the matrix $X^{\top} \Omega^{-1} \mathrm{Y}$.
6. Find the matrix $A=\left(X^{\top} \Omega^{-1} X\right)^{-1} X^{\top} \Omega^{-1} \mathrm{Y}$ whose elements will be the coefficients of the linear equation (Y is the vector of the dependent variable).

We begin calculations with the input of the initial data in a working sheet of the MS Excel package (Fig. 51).

,	A	B	c	D	E
1	$\times 1$	$\times 2$	$\times 3$	$\times 4$	y
2	226358	19317	395,6	2063,6	186,5
3	356842	22151	426,5	2810,7	192,5
4	373893	28757	541,3	3281,8	198,9
5	460520	34417	607	3875	221,6
6	504008	39691	658,3	4555,3	225,8
7	603704	49994	736,8	5471,8	267,3
8	809988	67556	903,5	6794,4	345,1
9	995630	94332	1229,4	9047	441,5
10	1182179	129952	1442,8	16890	544,2
11	1565055	178233	1722	21607	720,7
12	2072172	246903	2590,4	29543	948,1
13	1955685	230955	2754,1	35616	913,3
14	2388289	280890	3072, 7	40053	1082,6
15	2496365	350059	3456	44806	1316,6

Fig. 51. The initial data for building a multifactor model

2.5. Carrying out intermediate calculations.

We have to construct a matrix of the independent variables X1 - X4 and the dependent variable Y (Fig. 52).

4	A	B	C	D	E	F	G	H	1	」
16										
17		1	226358	19317	395,6	2063,6				186,5
18		1	356842	22151	426,5	2810,7				192,5
19		1	373893	28757	541,3	3281,8				198,9
20		1	460520	34417	607	3875				221,6
21		1	504008	39691	658,3	4555,3				225,8
22		1	603704	49994	736,8	5471,8				267,3
23	$x=$	1	809988	67556	903,5	6794,4			$y=$	345,1
24		1	995630	94332	1229,4	9047				441,5
25		1	1182179	129952	1442,8	16890				544,2
26		1	1565055	178233	1722	21607				720,7
27		1	2072172	246903	2590,4	29543				948,1
28		1	1955685	230955	2754,1	35616				913,3
29		1	2388289	280890	3072,7	40053				1082,6
30		1	2496365	350059	3456	44806				1316,6

Fig. 52. Construction of matrixes

Transposition in the MS Excel package is performed using the TРАНСП (array) function (Fig. 53).

4	A	B	c	D	E	F	G	H	1	1	K	L	M	N	0
16															
17		1	226358	19317	395,6	2063,6				186,5					
18		1	356842	22151	426,5	2810,7				192,5					
19		1	373893	28757	541,3	3281,8				198,9					
20		1	460520	34417	607	3875				221,6					
21		1	504008	39691	658,3	4555,3				225,8					
22		1	603704	49994	736,8	5471,8				267,3					
23	$\mathrm{x}=$	1	809988	67556	903,5	6794,4			$y=$	345,1					
24		1	995630	94332	1229,4	9047				441,5					
25		1	1182179	129952	1442,8	16890				544,2					
26		1	1565055	178233	1722	21607				720,7					
27		1	2072172	246903	2590,4	29543				948,1					
28		1	1955685	230955	2754,1	35616				913,3					
29		1	2388289	280890	3072, 7	40053				1082,6					
30		1	2496365	350059	3456	44806				1316,6					
31															
32															
33															
34		=TPAHCП(B17:F30)													
35															
36															
37															
38															
39															

Fig. 53. The transposition function window
First, select the appropriate array of free cells and drive the formula, then press Ctrl + Shift + Enter (Fig. 54).

Fig. 54. The value of the matrix \mathbf{X}^{\top}
Taking into account the value of the cyclic autocorrelation coefficient and formula 4, a matrix $\Omega-1$ with dimension 14×14 is formed (Fig. 55).

B41		$\checkmark-$	$f_{x}=1^{*}\left(1 /\left(1-0,124^{\wedge} 2\right)\right)$												
4	A	B	c	D	E	F	G	H	1	」	K	L	M	N	0
40															
41		1,015616113,	-0,12593688	0	0	0	0	0	0	0	0	0	0	0	0
42		-0,12593688	1,031236173	-0,12593688	0	0	0	0	0	0	0	0	0	0	0
43		0	-0,12593688	1,031236173	-0,1259369	0	0	0	0	0	0	0	0	0	0
44		0	0	-0,12593688	1,03123617	-0,12593688	0	0	0	0	0	0	0	0	0
45		0	0	0	-0,1259369	1,031236173	-0,12594	0	0	0	0	0	0	0	0
46		0	0	0	0	-0,12593688	1,031236	-0,12594	0	0	0	0	0	0	0
47	Ω^{-1}	0	0	0	0	0	-0,12594	1,031236	-0,12594	0	0	0	0	0	0
48		0	0	0	0	0	0	-0,12594	1,031236	-0,125937	0	0	0	0	0
49		0	0	0	0	0	0	0	-0,12594	1,0312362	-0,12593688	0	0	0	0
50		0	0	0	0	0	0	0	0	-0,125937	1,031236173	-0,12593688	0	0	0
51		0	0	0	0	0	0	0	0	0	-0,12593688	1,031236173	-0,12594	0	0
52		0	0	0	0	0	0	0	0	0	0	-0,12593688	1,031236	-0,12594	0
53		0	0	0	0	0	0	0	0	0	0	0	-0,12594	1,031236	-0,12594
54		0	0	0	0	0	0	0	0	0	0	0	0	-0,12594	1,015616
55															

Fig. 55. The result of calculating the matrix $\Omega \mathbf{- 1}$

Multiplication of two matrices in the MS Excel package is performed using the МУМНОЖ function (array 1; array 2) (Fig. 56, 57).

Fig. 56. The window for launching the function МУМНОЖ

Fig. 57. The МУМНОЖ function implementation window

Recall the rule of multiplication of matrices: two matrices can be multiplied if the number of rows of the second matrix is equal to the number of columns of the first matrix. When multiplying matrices, a matrix is obtained with the number of rows equal to the number of rows of the first matrix, and the number of columns equal to the number of columns of the second matrix. That is, in our case, when multiplying the X^{\top} matrix of dimension of 5×14 by the matrix $\Omega-1$ of dimension of 14×14, we obtain a matrix of dimension of 5×14.

But first select the range of free cells, where the results of multiplication of two matrices will be placed, and at the same time press Ctrl + Shift + Enter.

As a result, we obtain a new matrix (Fig. 58).

857		\checkmark -													
4	A	B	c	D	E	F	G	H	1	1	k	L	M	N	\bigcirc
56															
57		0,889679233,	0,779362413	0,779362413	0,77936241	0,779362413	0,779362	0,779362	0,779362	0,7793624	0,779362413	0,779362413	0,779362	0,779362	0,889679
58		184953,2641	292394,6403	282635,9664	364344,77	385726,231	457080,8	633873,8	775842,4	896621,07	1204098,518	1693507,712	1455037	1902213	2234575
59	XT Ω-1	16829,02863	16788,6229	22531,2612	26871,9278	30300,33697	38049,27	51490,22	72405,03	99685,217	136340,3739	203083,4448	171700,5	216492,8	320151,2
60		348,0656551	321,831965	428,052375	474,886476	509,6287934	563,1266	684,1048	972,316	1116,1774	1267,860066	2107,608114	2126,934	2386,599	3123,003
61		1741,854623	2225,312513	2542,334674	3009,06025	3520,483309	4213,372	5178,179	6346,854	13557,072	16434,64	23258,92665	27964,25	31175,96	40461,55
62															

Fig. 58. The results of using the МУМНОЖ function
At the next stage, we find the product of the matrices $\mathrm{X}^{\top} \Omega^{-1}$ and X using the function МУМНОЖ and get a matrix of dimension 5×5 (Fig. 59).

Аргументы функции
MУMHOK

Массив 1	857:061	臨	$=\{0,889679233359008 ; 0,7793624131 \ldots$
Массив2	B17:F30	區	$=\{1 ; 226358 ; 19317 ; 395,6 ; 2063,6: 1 ; 3 \ldots$

$=\{11,131707424158 ; 12762903,33088 .$.
Возвращает матричное произведение двух массивов; результат имеет то же число строк, что и первый Массив, и то же число столбцов, что и второй массив.

Массив2 первый из перемножаемых массивов, число столбцов в нем должно равняться числу строк во втором массиве.

Значение: 11,13170742

Fig. 59. The results of using the МУМНОЖ function

To obtain the given inverse matrix, the function MOBP (array) is used (Fig. 60). The dimension of the inverse matrix will also be 5×5. But first select the range of free cells where the results of the inverse matrices will be placed, and simultaneously press Ctrl + Shift + Enter.

МУМННК		$\cdots \times \checkmark f_{x}$	=MOEP(B64:F68)			
4	A	B	C	D	E	F
63						
64		11,13170742	12762903,33	1422719,272	16430,1945	181629,846
65	XTS-1 X	12762903,33	2,15965E+13	2,58674E+12	2,8018E+10	3,38454E+11
66		1422719,272	2,58674E+12	3,15617E+11	3375054625	41371606010
67		16430,19453	28018149135	3375054625	36596185,8	443500426,8
68		181629,846	3,38454E+11	41371606010	443500427	5490362228
69						
70						
71		=MOEP(B64:F68)				
72	$(X T \Omega-1 \times)^{-1}$					
73						
74						
75						
76						

Аргументы функции

Q	x

MOEP
Массив B64:F68
扉要 $=\{42351759437,5238 ; 65491907698,9 \ldots$
$=\{14,3288432174959 ; 6,41407380406 \ldots$
Возвращает обратную матрицу (матрица хранится в массиве).
Массив числовой массив с равным количеством строк и столбцов, либо диапазон или массив.

Значение: 14,32884322
Справка по этой функции
OK
Отмена

Fig. 60. The window for using the MOBP function

According to the appropriate procedure, we determine the matrix $X^{\top} \Omega^{-1}$ on the vector Y (Fig. 61).

B78		- -	f_{x} \{	\{=МУМНО* (В57:061;J17:」30)
4	A	B	C	D
76				
77				
78		6092,634556		
79	XTS-1 Y	10289905091		
80		1241308071		
81		13405601,96		
82		162272499,1		

Fig. 61. The matrix $\mathbf{X}^{\top} \mathbf{\Omega}^{-1} \mathbf{y}$
Determine the parameters of the model. To do this, use the above functions and perform calculations in accordance with formula 3. The results of the calculations are shown in Fig. 62.

77				
78		6092,634556		
79	XT $\Omega-1 \mathrm{Y}$	10289905091		A
80		1241308071		$-7,48253 \mathrm{E}-06$
81		13405601,96		0,003294532
82		162272499,1		0,011566208
83			0,000785971	

Fig. 62. Calculation of parameters of a multifactor regression model by the Aitken method
2.6. Formation of a general form of a multifactor regression model. The general view of the model is as follows:

$$
Y=104.945-7.48 X 1+0.0033 X 2+0.0116 X 3+0.0008 X 4
$$

2.7. Checking the obtained model for the presence of an auto-residual relation.

In order to verify the elimination of autocorrelation of residues in the model, it is advisable to calculate the Durbin - Watson coefficient as:

$$
D W=\frac{\sum_{t=2}^{T}\left(u_{t}-u_{t-1}\right)^{2}}{\sum_{t=1}^{T} u_{t}^{2}}
$$

where u_{t} is regression residues (the difference between the theoretical and predicted values of the indicator);
$\mathrm{u}_{\mathrm{t}-1}$ is the value of the previous level of regression residues.

Find the calculated values based on the constructed econometric model and determine the residuals (Table 12).

Table 12

Calculation of model residues

Years	y	yt	Ut	$\mathrm{Ut} \wedge 2$	$(\mathrm{Ut}-\mathrm{Ut}-1)^{\wedge} 2$
1998	186.5	176.4705435	10.02945653	100.59	
1999	192.5	187.7281931	4.77180687	22.77014	27.64287995
2000	198.9	211.3175286	-12.41752856	154.195	295.4732527
2001	221.6	231.8389076	-10.23890755	104.8352	4.746389515
2002	225.8	250.6677129	-24.86771294	618.4031	214.0019471
2003	267.3	286.9855456	-19.68554563	387.5207	26.85485801
2004	345.1	349.3552574	-4.255257357	18.10722	238.0937963
2005	441.5	444.4986271	-2.998627063	8.991764	1.579119697
2006	544.2	571.8783215	-27.67832146	766.0895	609.0873157
2007	720.7	740.7434552	-20.04345516	401.7401	58.29118354
2008	948.1	987.0545852	-38.95458522	1517.46	357.6308403
2009	913.3	940.3089128	-27.00891282	729.4814	142.699089
2010	1082.6	1115.23038	-32.63038033	1064.742	31.60089694
2011	1316.6	1352.087602	-35.487602	1259.37	8.163715681
			Sum	7154.295	2015.865284

$$
\mathrm{DW}=\frac{2015.8652842}{7154.295}=0.282 .
$$

The critical values of the criterion are equal to $\mathrm{dl}=0.69$, $\mathrm{du}=1.97$.
Assuming that du $<\mathrm{DW}<4-\mathrm{du}$, we see that this indicates the absence of autocorrelation of the model. In our case: $0.69>0.28<4-1.97$. That is $0<\mathrm{DW}<\mathrm{dl}$, so there is a positive autocorrelation of residues.

Thus, the model constructed using the Aitken method has autocorrelations in the residuals. This is one of the proofs of the insufficient quality of the model.

There are several ways to eliminate or reduce autocorrelation in time series. The most effective one is to exclude the trend from the numerical series and move to a random component. The following methods are used to eliminate autocorrelation:

1) the method based on the inclusion of time in the multiple regression equation as an argument - the Frisch - Waugh method;
2) the finite difference method, where the least squares method processes the levels of the original series and their successive differences between them;
3) the method of deviations of empirical values from those aligned with the trend;
4) the Cochrane - Orcutt method;
5) the Hildreth - Lu method.

Conclusion: to eliminate the autocorrelation in the model residues, the calculations of the model parameters have been performed using the Aitken method. According to the obtained results, in further calculations, it is necessary to use one of the methods of elimination of autocorrelation in the model residues.

Task 3. Construct a model of the influence of indicators of development of Ukraine's regions on the level of foreign investments (Table 13) and check the model for the presence of autocorrelation.

Table 13
The indicators of development of the regions of Ukraine

Regions of Ukraine	X1 Share of enterprises of collective ownership (in \% to the total number in the region)	X2 Industry index (\%)	X3 Labor productivity index (\%)	Y Foreign investments (million US dollars)
1	2	3	4	5
Autonomous Republic of Crimea	0.220	0.180	0.170	0.200
Vinnytsia	0.820	0.540	0.450	0.530
Volyn	0.910	0.460	0.470	0.510

Table 13 (the end)

1	2	3	4	5
Dnipro	0.960	0.870	0.770	0.850
Donetsk	3.490	4.490	4.810	4.050
Zhytomyr	0.310	0.840	1.210	0.960
Transcarpathia	0.550	2.360	2.230	1.570
Zaporizhzhia	0.130	0.450	0.690	0.880
Ivano-Frankivsk	0.770	0.810	0.830	0.800
Kyiv	0.250	0.460	0.550	0.510
Kropyvnytskyi	0.500	1.080	1.040	0.800
Luhansk	0.120	0.390	0.530	0.750
Lviv	0.220	0.180	0.170	0.200
Mykolaiv	0.910	0.540	0.450	0.560
Odesa	0.960	0.460	0.470	0.570
Poltava	0.160	0.870	0.770	0.850
Rivne	0.110	0.710	0.880	0.860
Sumy	0.020	0.070	0.270	0.140
Ternopil	0.010	0.140	0.250	0.220
Kharkiv	0.043	0.030	0.070	0.090
Kherson	0.969	0.136	0.154	0.175
Khmelnytskyi	0.172	0.073	0.182	0.201
Cherkasy	0.108	0.105	0.178	0.289
Chernivtsi	0.064	0.150	0.181	0.352
Chernihiv		0.189	0.354	0.979

Task 4. Using the input data from Table 14, build a forecast for 1 year ahead (4 periods) using the module "Analysis of the time series module" of the program Statistica 10.0.

Table 14

The input data

Period	Air traffic load (\%)	Period	Air traffic load (\%)	Period	Air traffic load (\%)
2014	78	2017	81	2018	77
	74		75		77
	77		74		77
	76		75		78
2015	75	2016	77	2019	78
	78		75		78
	74		75		78
	76		79		79

Task 5. Using the statistical data of the website of the State Statistics Service of Ukraine [19], find information about the tourist activity in Ukraine (on a yearly basis) and build a forecast for one year ahead using the models of adaptive forecasting.

Task 6. Using your own information space of research, build a multifactor regression model and check it for autocorrelation.

Task 7. Using the statistical data of the website of the State Statistics Service of Ukraine [19], find information about production and sale of industrial products according to the type (on a yearly basis) and build a forecast for 2 years ahead using the module "Analysis of the time series module" of the program Statistica 10.0.

The list of questions for independent work

1. What is the essence of smoothing methods?
2. What are the iterative smoothing methods?
3. What is the difference between exponential and simple smoothing?
4. What are the possibilities of using the methods of Brown, Holt, Winters?
5. What is the autoregression model used for?
6. What is the essence of the Granger test?
7. What is the classification of the vector autoregression models?
8. What are the ways of combining time series components into a model?
9. What is pulsed spectral analysis used for?
10. What is the difference between ARMA and ARIMA models?

Content module 2. Modeling and forecasting of multidimensional processes

Topic 5. Factor analysis of data

Task 1. In order to conduct a detailed analysis of the demographic situation in a country, it is necessary to reduce the information space (Table 15) using the methods of factor analysis.

Table 15

The input data

Years	X1 Employment to population ratio	Unemployment (\% of total labor force)	X3 Population	X4 Rate of natural increase	X5 GDP per capita	Wage and salary
2005	58.26	7.26	8391850	89939	1578.40	123.6
2006	58.72	6.62	8484550	96698	2473.08	154.81
2007	58.91	6.33	8581300	98308	3851.44	199.67
2008	59.4	5.86	8763400	99376	5574.60	246.34
2009	59.83	5.74	8947243	99625	4950.29	291.29
2010	60.17	5.63	9054332	112063	5842.81	331.5
2011	60.52	5.42	9173082	122310	7189.69	351.86
2012	60.94	5.19	9295784	119452	7496.29	389.94
2013	61.36	4.97	9416801	118288	7875.76	418.25
2014	61.86	4.91	9535079	114855	7891.31	444.5
2015	62.27	4.96	9649341	111513	5500.32	466.9
2016	62.95	5	9757812	102816	3880.74	499.8
2017	63.26	5	9854033	86932	4147.09	528.5
2018	63.56	4.9	9939800	81732	4722.38	544.6

Guidelines

The Factor Analysis module contains a wide range of methods for selection of factors, thus reducing the input information space.

Let's consider the main stages of conducting factor analysis in the system (package) Statistica 10.0 using the following example (see Table 15).

To reduce the initial information space we need the Factor Analysis module (Statistics / Multivariate Exploratory Techniques / Factor Analysis or

Multidimensional Methods / Factor Analysis). The Factor Analysis dialog box is shown in Fig. 63.

M STATISTICA - Spreadsheet6				
File Edit View Insert Format 		Statistics Data Mining Graphs Tools Data Weindow Scorecard Help		
		Resume... Ctrl +R	Add to Report - Add to MS Word - A \% \$.	
Times New Roman \checkmark	11	Basic Statistics/Tables Multiple Regression ANOVA Nonparametrics Distribution Fitting Distributions \& Simulation		+
		Multiple Regression ANOVA Nonparametrics Distribution Fitting Distributions \& Simulation Advanced Linear/Nonlinear Models Multivariate Exploratory Techniques Industrial Statistics \& Six Sigma Power Analysis Automated Neural Networks PLS, PCA, Multivariate/Batch SPC Variance Estimation and Precision Statistics of Block Data STATISTICA Visual Basic Batch (ByGroup) Analysis	Cluster Analysis Factor Analysis Principal Components \& Classification Analysis Canonical Analysis Reliability/Item Analysis Classification Trees Correspondence Analysis Multidimensional Scaling Discriminant Analysis General Discriminant Analysis Models 0,306 0,837 0,279	
		Probability Calculator		

Fig. 63. The Factor Analysis module

The Variables button allows you to select all variables from the data file that must be included in the factor analysis. If all variables are used for analysis, you can use the Select All button (Fig. 64).

Fig. 64. Choosing the variables

The module includes the following output types: Correlation Matrix and Raw Data. Let's choose Raw Data. This is a regular data file, where the values of the variables are written in rows:

MD deletion (replace missed variables). A method for processing missed values;

Casewise (a way to exclude missed cases) is a method where in the spreadsheet containing the data, all the rows (cases) that have at least one missing value are ignored. This applies to all variables. In the table, there are only cases in which there is no skip;

Pairwise (a duplicate way to exclude missed values). Missed cases are ignored for all variables, but only for the selected pair. All cases in which there are no spaces are used in processing, for example, with elemental calculation of the correlation matrix, when all pairs of variables are sequentially considered. Obviously, the Pairwise method has more observations for processing than the Casewise method;

Mean Substitution (substitution of the average for the missed values).
By clicking on the OK button in the startup window of the module, the analysis of the selected variables begins. The Statistica system will process the missed values in the way indicated, calculate the correlation matrix and offer a choice of several methods for factor analysis. The calculation of the correlation matrix (if not specified immediately) is the first stage of factor analysis. After clicking the Ok button, you can go to the next dialog.

The window Define Method of Factor Extraction is presented in Fig. 65.

Fig. 65. The Define Method of Factor Extraction window

This window has the following structure. The upper part of the window is informational: it is reported here that the missing values are processed by the Casewise method. 14 cases were treated and 14 cases were taken for further calculations. The correlation matrix is calculated for 6 variables. The group of options merged under the heading Extraction method allows you to choose a method of processing.

To continue the analysis in the Define Method of Factor Extraction window (Fig. 66), we need to click on the Review correlations, means, standard deviations button (View correlations / average / standard deviations).

Fig. 66. The Review correlations, means, standard deviations window
After that a window for viewing descriptive statistics for the analyzed data appears, where you can see the average, standard deviations, correlations, covariations, build different graphs (Fig. 67).

Fig. 67. Additional analysis

Here one can carry out additional analysis of the current data, verify the conformity of the sample variables to the normal distribution law and the existence of a linear correlation between the variables. Clicking the Correlations button will display the correlation matrix of the variables selected earlier (Fig. 68).

Variable	Correlations (Spreadsheet2) Casewise deletion of MD $\mathrm{N}=14$					
	X1	X2	$\times 3$	X4	X5	$\times 6$
X1	1,00	-0,89	0,99	-0,04	0,33	0,99
X2	-0,89	1,00	-0,93	$-0,33$	-0,69	$-0,94$
$\times 3$	0,99	-0,93	1,00	0,06	0,42	1,00
$\times 4$	-0,04	$-0,33$	0,06	1,00	0,78	0,09
$\times 5$	0,33	$-0,69$	0,42	0,78	1,00	0,46
$\times 6$	0,99	-0,94	1,00	0,09	0,46	1,00

Fig. 68. The correlation matrix
So, at the next stage, we choose the method of allocation of factors the method of the principal components (taking as a basis the correlation matrix of the initial data, this method allows you to reduce the dimension of the data and minimize the loss of information) and specify the maximum number of factors (6 in our case) and the minimum actual value of the Kaiser criterion (not less than 1). Statistica 10.0 automatically performs calculations and publishes the results of the factor analysis (Fig. 69).

Fig. 69. The Define Method window of factor analysis
In the upper part of the window of the results of the factor analysis, an informative message is given: Number of variables (the number of analyzed variables): 6; Method (the method of analysis): Principal components; log (10)
determination of correlation matrix (a decimal logarithm of the determinant of the correlation matrix): -7.6007 ; Number of factors extracted (the number of selected factors): 2; Eigenvalues: 4.21987; 1.61193.

As a result, two main factors that correspond to the highest eigenvalues of the correlation matrix were identified: $\lambda 1=4.21987$ and $\lambda 2=1.61193$, so two of these factors account for the largest part (97.2%) of the variance explanation. Namely, the first factor explains 70% (70.33%) of the total dispersion, while the share of the second factor accounts for almost 27% (26.86%) of the dispersion explanation. Together, they describe approximately 97.2 \% of the dispersion, that is, almost the entire array of data (Fig. 70).

Eigenvalues (Spreadsheet2) Extraction: Principal components				
Value	Eigenvalue	\% Total variance	Cumulative Eigenvalue	Cumulative $\%$
$\mathbf{1}$	4,219872	70,33120	4,219872	70,33120
2	1,611928	26,66546	5,831799	97,19666

Fig. 70. The eigenvalues
Thus, factorization is almost complete, although there are other, less significant factors. In order to ensure that the correct number of factors is obtained, it is expedient to use the Kettle criterion or Kettle Test (stony maturity criterion), which makes it possible to show graphically in descending order the eigenvalues of each selected factor and find a place on the graph where the reduction of these values from the left to the right as much as possible slows down. In accordance with this criterion, at points with coordinates 1, 2 the ash is slowed down most significantly, therefore, theoretically, one can restrict two factors (Fig. 71, 72).

Fig. 71. Choosing the visualization of eigenvalues

Fig. 72. The plot of eigenvalues
In the bottom of the window there are subdivisions that allow you to comprehensively get acquainted with the results of the analysis numerically and graphically. Plot of loadings, 2D and Plot of loadings, 3D (Load Charts) are options that will construct factor loading schedules in the projection onto the plane of any two selected factors and in projection into the space of the three selected factors (for which the presence of at least three selected factors is required) (Fig. 73).

Fig. 73. The polygon of factor loadings

Summary. Factor loadings. This option shows a table with current factor loadings, that is, those calculated for this method of rotation of factors, which is indicated to the right of the corresponding button. In this table, the factors correspond to the columns, and the variables are lines, and for each factor the loading of each output variable is given which shows the relative magnitude of the projection of the variable to the factor coordinate axis. Factor loadings can be interpreted as correlations between the corresponding variables and factors the higher the loading modulus, the greater the proximity of the factor to the initial variable; and they represent the most important information for interpreting the resulting factors. In a generated table, for facilitation purposes, factor loadings will be allocated in absolute values greater than 0.7 (Fig. 74).

Fig. 74. Factor loadings

The results presented in Fig. 74 show that the first factor is more correlated with variables than the second one. Since the correlation of other factors is insignificant, in this case, it is advisable to resort to the rotation of the axes, hoping to obtain a solution that can be interpreted in the subject area. Now it is expedient to determine which indicators were included in the first and second factors. To do this, you should review the factor loading (correlations between the corresponding variables and factors - the higher the loading modulus, the greater the proximity of the factor to the output variable). However, one should immediately turn to the axes in order to obtain a simple structure in which most observations are located near the axes of coordinates. The results of changes in the composition of factors and factor loadings after their rotation using the normalized version are given in Fig. 75.

泷 Factor Analysis Results：Spreadsheet2	8 \times
Number of variables： 6 Method：Principal components log（10）determinant of correlation matrix：－7，6007 Number of factors extracted： 2 Eigenvalues：4，21987 1，61193	
	践 \pm
Quick｜Explained variance｜Loadings Scores ${ }^{\text {｜Descriptives }}$｜	（ex Summary
Eigenter	Cancel
Factor rotation：Varimax raw	国 Options
Sum	
＊Plot of factor loadings， 2 LD	

Fig．75．The results of changes in the composition of factors and factor loadings after their rotation

Thus，according to the results，we have the following equations， where X1－X6 are indicators characterizing the activity of a private enterprise， and $\mathrm{f} 1, \mathrm{f} 2$ are factor loadings：

$$
\begin{array}{cc}
\mathrm{X} 1=0.997 \mathrm{f} 1-0.006 \mathrm{f} 2 ; & \mathrm{X} 4=-0.049 \mathrm{f} 1+0.965 \mathrm{f} 2 ; \\
\mathrm{X} 2=-0.904 \mathrm{f} 1-0.406 \mathrm{f} 2 ; & \mathrm{X} 5=0.35 \mathrm{f} 1+0.898 \mathrm{f} 2 ; \\
\mathrm{X} 3=0.993 \mathrm{f} 1+0.094 \mathrm{f} 2 ; & \mathrm{X} 6=0.989 \mathrm{f} 1+0.133 \mathrm{f} 2 .
\end{array}
$$

The criterion for selecting quantitative indicators in the integral was applied factor loadings whose value was determined by the correlation coefficient of Pearson（ R ）and is within $0.7 \geq R>0.9$ ，which，according to the Chaddock scale，indicates a strong correlation between the investigated parameters，which means that for the analyzed period 97% of changes in the demographic situation is explained by the influence of the following indicators： $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ and X 6 ．So，for detailed analysis of the demographic situation in the country it is advisable to leave such indicators as employment to population ratio，unemployment（\％of total labor force），population and wage and salary．

Task 2．For the analysis of the demographic situation in Ukraine，the following indicators have been selected（Fig．76）：X1－the number of employed；X2－the unemployment rate；X3－the number of permanent population；X4－natural population increase（reduction）；X5－income of the population，UAH million；X6－the average monthly nominal wage．

䀝 Data: Spreadsheet1* (6 v by 14 c)						\square 回
	1	2	3	4	5	6
	X1	X2	X3	X4	X5	X6
1998	18570	12,6	48,3	-397,5	10270	153,9
1999	19870	12,3	48,5	-385,6	11480	177,2
2000	20180	11,6	48,7	-373	128700	230
2001	20170	10,8	48,1	-371	169000	311,8
2002	20090	9,6	47,8	-364,2	185100	376
2003	20160	9,1	47,4	-356,8	215700	462
2004	20300	8,6	47,1	-334	274200	590
2005	20680	7,2	46,7	-355,9	381400	806
2006	20730	6,8	46,5	-297,7	472100	1041
2007	20910	6,4	46,2	-290,2	615000	1351
2008	20970	6,4	46	-243,9	856600	1806
2009	20190	8,8	45,8	-194,2	897700	1906
2010	20270	8,1	45,6	-200,5	1101000	2239
2011	20445	7,6	45,1	-198,3	1112056	2356

Fig. 76. The initial data in Statistica 10.0
Make an aggregation of factors and provide an economic interpretation of the results of factor analysis.

Task 3. Reduce the information space (Fig. 77) using factor analysis methods. The initial indicators were the medical characteristics of the countries:

X1, population (thousand people);
X2, the number of people per doctor;
X3, per capita health expenditures (\$);
X 4 , infant mortality rate;
X5, GDP calculated at purchasing power parity per capita (million \$);
X6, mortality per 1,000 people.

COUNTRIES	$\begin{aligned} & \mathrm{1} \\ & \mathrm{X} 1 \end{aligned}$	$\begin{aligned} & 2 \\ & \mathrm{X} 2 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \text { X3 } \end{aligned}$	$\begin{aligned} & \hline 4 \\ & \mathrm{X} 4 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & \mathrm{X} 5 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & \mathrm{X} 6 \end{aligned}$
Azerbaijan	8041	256	99	29,3	3000	9,6
Armenia	3787	198	152	15,4	3000	9,7
Belarus	10187	222	157	12,5	7500	14
Georgia	5262	182	152	17,6	4600	14,6
Kazakhstan	16172	265	154	42,1	5000	10,6
Kyrgyzstan	4921	301	118	37	2700	9,1
Moldova	4295	251	143	20,5	2500	12,6
Russia	145491	235	159	16,8	7700	13,9
Tajikistan	6087	439	100	53,3	1140	8,6
Turkmenistan	4737	320	125	48,6	4300	9
Uzbekistan	24881	299	116	36,7	2400	8
Ukraine	49568	224	131	15,3	3850	16,4

Fig. 77. The initial data in Statistica 10.0

Task 4. Using the statistical data of the website of the State Statistics Service of Ukraine [19], find information about main indicators that characterize the level of country's economic development and reduce the information space using the methods of factor analysis using of the program Statistica 10.0.

Task 5. For analysis of the activities of a private enterprise (over the past 18 years), the following indicators were selected (Fig. 78):

X1, the proportion of losses from marriage;
X 2 , the index of reducing production costs;
X3, return on capital;
X4, the equipment variability coefficient;
X5, labor productivity;
X6, the share of material costs.

	$\begin{gathered} 1 \\ \times 1 \end{gathered}$	$\begin{gathered} \hline 2 \\ \mathrm{X} 2 \end{gathered}$	$\begin{gathered} \hline 3 \\ \text { X3 } \end{gathered}$	$\begin{gathered} 4 \\ \times 4 \end{gathered}$	$\begin{gathered} 5 \\ \times 5 \end{gathered}$	$\begin{gathered} 6 \\ \times 6 \end{gathered}$
1	6646,2	44,9	702,1	163,7	58,9	310,5
2	5862,4	25,4	1852,1	144,5	724,6	608,6
3	7	123,5	126,2	154,1	859,1	322,9
4	7097,2	15,3	2142,6	144,5	14,9	347,8
5	4638,4	11,5	895,8	163,7	44,8	211,1
6	7913,2	75,7	1307,3	327,4	1038,3	211,1
7	7537,4	52,7	1392,1	327,4	59,8	385
8	8858	39	1174,2	327,4	575,2	223,6
9	8750,7	87256,3	1355,8	183	575,2	385
10	9362,7	61,8	1198,4	183	806,8	223,6
11	7129,4	64,6	702,1	327,4	694,7	385
12	8,7	61569,3	1246,8	327,4	0,1	186,3
13	5926,8	27,2	1501	144,5	82,2	347,8
14	10060,6	167428,8	1077,3	183	1075,7	223,6
15	14140,6	504394,6	823,1	327,4	358,6	173,9
16	7161,6	60456,2	1246,8	183	96,3	223,6
17	6098,6	76428,3	883,7	308,2	575,2	360,2
18	5572,5	69,2	883,7	183	694,7	0,4

Fig. 78. The initial data in Statistica 10.0
Reduce the information space (see Fig. 78) using the factor analysis methods.

Task 6. Using your own information space of research make an aggregation of factors and provide an economic interpretation of the results of factor analysis.

Task 7. Using the statistical data of the website of the State Statistics Service of Ukraine [19], find information about the main indicators that characterize the level of socioeconomic growth of regions and reduce the information space using the methods of factor analysis in the program Statistica 10.0.

The list of questions for independent work

1. What is the essence of the method of factor analysis?
2. What is the basis for constructing a factor matrix?
3. What are the stages of the construction of the main components?
4. What is the essence of the procedure varimax?
5. What is matrix transformation and what does it depend on?
6. What are the methods of factor analysis?
7. What is the essence of factor loadings?
8. Expand on the essence of the previous quotient analysis procedures.
9. What is a group of factors?
10. What is the factor rotation method used for?

Topic 6. Cluster analysis as a means of forming homogeneous data groups

Task 1. Based on the analysis of the dendrogram shown in Fig. 79, draw a conclusion about the number of clusters in the population under study. Justify the answer.

Fig. 79. The dendrogram built by means of the program Statistica 10.0

Guidelines

Using the constructed dendrite, you can determine the number of clusters into which it is advisable to divide the set of objects using two approaches.

The first approach is based on the visual analysis of the dendrites shown in Fig. 79. It can be concluded that it is necessary to divide the set of objects into 3 clusters.

The second approach is based on natural ways of allocating the number of clusters into which the set is divided. This approach consists of the following steps:

1. The bonds of the dendrites built on the units of the set are arranged in descending order of their length (formula 7):

$$
\begin{equation*}
\mathrm{i}_{2}=\frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}, \mathrm{i}_{3}=\frac{\mathrm{d}_{2}}{\mathrm{~d}_{3}}, \ldots, \mathrm{i}_{\sigma-1}=\frac{\mathrm{d}_{\varpi-2}}{\mathrm{~d}_{\varpi-1}}, \tag{7}
\end{equation*}
$$

where $d_{1}, d_{2}, \ldots d_{\omega-1}$ are the ordered bond lengths;
$i_{1}, i_{2}, \ldots i_{w-1}$ is the ratio of bond lengths.
2. A search is made for the following value of i_{k} for which the following relation holds:

$$
i_{k}<i_{k+1} \text { for } k=2,3, \ldots, \bar{\omega}-1 .
$$

If this relation is satisfied, it can be argued that it is preferable to divide the population into k parts:

$$
\mathrm{i}_{2}=\frac{23}{22}=1.04, \mathrm{i}_{3}=\frac{22}{6}=3.6, \mathrm{i}_{4}=\frac{6}{4}=1.5 .
$$

That is, for $\mathrm{k}=2$, the condition $1.04<3.6$ is fulfilled.
Based on the analysis, we can conclude that in a further study it is necessary to build two and three clusters by artificial clustering and compare the quality of the obtained clusters.

Task 2. Classify (group) cars and their owners into insurance risk groups, which is assessed based on the following indicators:

1) the cost of the car, million UAH (X1);
2) the age of the driver, years (X2);
3) the experience of the driver, years (X 3);
4) the age of the car, years (X4).

The initial values of the indicators are given in Table 16.
Table 16

The initial data

No.	Car model	X1	X2	X3	X4
1	Acura	0.521	25	3	10
2	Audi	0.666	24	3	1
3	BMW	0.496	29	3	4
4	Buick	0.614	50	25	9
5	Corvette	1.235	62	38	15
6	Chrysler	0.614	43	21	9
7	Dodge	0.706	26	1	5
8	Eagle	0.614	20	1	1
9	Ford	0.706	54	10	11
10	Honda	0.429	38	8	7
11	Isuzu	0.798	27	5	3
12	Mazda	0.126	51	20	10
13	Mercedes	1.051	46	25	4
14	Mitsubishi	0.614	28	2	7
15	Nissan	0.429	31	6	6
16	Olds	0.614	45	16	4
17	Pontiac	0.614	40	16	2
18	Porsche	3.454	41	8	8
19	Saab	0.588	29	5	2
20	Toyota	0.059	36	13	1
21	VW	0.706	38	15	6
22	Volvo	0.219	42	19	4

Guidelines

1. To construct cluster groups, we assess the values of the indicators. For this purpose, in the context menu, we need to standardize the initial data. So, select Fill / Standardize Block / Standardize Columns as shown in Fig. 80.

11] Data: Spreadsheet7* (4v by 22c)				
	$\begin{array}{r} 1 \\ \times 1 \\ \hline \end{array}$	$\begin{gathered} \hline 2 \\ \times 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 \\ \times 3 \end{gathered}$	$\begin{aligned} & \hline 4 \\ & \times 4 \end{aligned}$
Acura	-0,3022	-1,12873	-0,91643	1,10438
Audi	-0,08365	-1,21903	-0,91643	-1,29856
BMW	-0,33988	-0,76753	-0,91643	-0,49758
Buick	-0,16203	1,128727	1,335109	0,837387
Corvette	0,773971	2,212305	2,665565	2,439346
Chrysler	-0,16203	0,49664	0,925737	0,837387
Dodge	-0,02336	-1,03843	-1,12112	-0,23058
Eagle	-0,16203	-1,58022	-1,12112	-1,29856
Ford	-0,02336	1,48992	-0,20003	1,371373
Honda	-0,44087	0,045149	-0,40472	0,303401
Isuzu	0,115304	-0,94813	-0,71175	-0,76457
Mazda	-0,89756	1,219025	0,823395	1,10438
Mercedes	0,496637	0,767534	1,335109	$-0,49758$
Mitsub.	-0,16203	$-0,85783$	-1,01878	0,303401
Nissan	-0,44087	-0,58694	-0,6094	0,036408
Olds	-0,16203	0,677236	0,414023	-0,49758
Pontiac	-0,16203	0,225745	0,414023	-1,03156
Porsche	4,118548	0,316044	-0,40472	0,570394
Saab	-0,20122	-0,76753	-0,71175	-1,03156
Toyota	-0,99855	-0,13545	0,106995	-1,29856
WW	-0,02336	0,045149	0,31168	0,036408
Volvo	-0,75739	0,406342	0,721052	-0,49758

Fig. 80. The normative values of energy security indices
2. To perform a cluster analysis, we need to log into the cluster analysis module; so, we need to use the menu Statistics / Multivariate Exploratory / Cluster Analysis menu (Fig. 81).

Fig. 81. The Cluster Analysis module

The resulting dialog allows you to use one of the methods of clustering:

1) Joining (tree clustering);
2) K-means clustering;
3) Two-way joining.

Let's start cluster analysis with methods of natural hierarchical clustering - Single Linkage (Fig. 82).

Fig. 82. Choosing the Ward method
3. In order to determine the number of clusters it is expedient to initially conduct natural (tree-like) clustering. In the Statistica 10.0 package. This type of clustering involves the implementation of several stages.
3.1. Selection of indicators for which clustering is carried out (Fig. 83).

Fig. 83. Selection of the indicators for the analysis
3.2. Selection of objects of classification in the Cluster field. When clustering the variables themselves, they are labeled Variables [columns], in this task Cases [rows] (Fig. 84).

Fig. 84. Choosing the parameters of cluster analysis
3.3. The choice of rules for grouping objects. To do this, use the Amalgamation [linkage] rule menu, which allows you to choose one of the following rules:
> Single Linkage (one-way method "Closest neighbor's principle").
> Complete Linkage ("full-length" method).
> Unweighted pair-group average (unweighted pair average).
> Weighted pair-group average (weighted pairwise average).
> Unweighted pair-group centroid (unweighted centroid method).
$>$ Weighted pair-group centroid (Weighted centroid method).
> Ward's method.
According to the work purpose, let's use the single-linkage method.
3.4. Choosing the distance type to be used in the clustering process. For this purpose, in the Distance measure window, you must select one of the distance types used in the package:

- Squared Euclidean distances (square of the Euclidean distance);
- Euclidean distances;
- City-block (Manhattan) distance (distance from city districts (Manhattan distance));
- Chebyshev distance metric (Chebyshev distance);
- Percent disagreement.

According to the work purpose, let's use the Euclidean distance.
After setting all clustering parameters, we go to the window of its results (Fig. 85).

Fig. 85. Choosing the parameters of cluster analysis
Using the Vertical (Horizontal) icicle plot button, we build a vertical dendrogram (Fig. 86) and a horizontal hierarchical dendrogram (Fig. 87).

Fig. 86. The vertical dendrogram

Fig. 87. The horizontal hierarchical dendrogram
Graphical analysis of the number of cluster groups based on the use of dendrograms in Fig. 86, 87, suggests that it is most appropriate to divide the set of the car models into 3 clusters, as the number of border crossings is 3 times.

Also, one of the tools available in Statistica for selecting the number of clusters is the graph of the merging process (the button Graph of Amalgamation schedule) and the table of the merging objects (the button Amalgamation schedule), presented in Fig. 88, 89.

Fig. 88. The table of the merging objects

Fig. 88. (the end)

Fig. 89. The graph of the merging process
How to use these tools to determine the number of clusters? There are some practical recommendations:

1) on the graph, there is a point of fracture and a step number m, where this fracture occurred; then the number of clusters is $n-m$, where n is the number of objects in the sample;
2) in the column linkage distance of the table of merging objects, there is a step number m , where merging of objects took place at a significantly greater distance than in the step $m-1$; then the number of clusters is $n-m$, where n is the number of objects in the sample.

In our case, we can consider step number 19, as a turning point, where we get $22-19=3$ clusters. Also, the analysis of the table of merging objects shows that in the 19th step, there was a distance jump of almost 1.13 units, while in the previous steps, the jumps did not exceed 0.2 units.

Thus, according to the level of risk, the studied car models should be divided into 3 clusters.
4. Construction of clusters using the method of k-means (non-hierarchical clustering) is carried out in the following stages:
4.1. Setting the basic clustering parameters. Similar to the method of tree clustering, the indicators based on which the clustering is carried out are selected. Taking into account the results of the hierarchical method, the number of clusters equal to 3 is indicated (Fig. 89).

Fig. 89. The stages of the \mathbf{k}-means method
4.2. In the clustering results window, you can select those calculations and reports for the cluster analysis that the user needs (Fig. 90).

Fig. 90. Selection of the parameters of the k-means method

4.3. The results of cluster analysis.
4.3.1. The Cluster Means \& Euclidean Distances button (mean values in the clusters and Euclidean distances) is presented in Fig. 91.

Cluster Number	Euclidean Distances between Clusters (Spreadsheet7) Distances below diagonal Squared distances above diagonal			
	No. 1	No. 2	No. 3	
No. 1	0,000000	1,148829	0,841446	
No. 2	1,071834	0,000000	2,698969	
No. 3	0,917303	1,642854	0,000000	

Fig. 91. The Euclidean distances

By the matrix of distances between clusters, one can determine the quality of the clusterization carried out. The greater the distance between the clusters and the less the distance between the elements of the clusters, the more qualitative clustering is carried out.
4.3.2. The Descriptive Statistics button for each cluster allows you to define descriptive statistics for each cluster (Fig. 92).

Variable	Descriptive Statistics for Cluster 1 (Spreadsheet7) Cluster contains 7 cases			
	Mean	Standard Deviation	Variance	
$\times 1$	-0,292513	0,494278	0,244310	
$\times 2$	0,290244	0,340726	0,116094	
$\times 3$	0,414023	0,535061	0,286291	
$\times 4$	-0,497578	0,555790	0,308903	

Variable	Descriptive Statistics for Cluster 2 (Spreadsheet7) Cluster contains 6 cases			
	Mean	Standard Deviation	Variance	
$\times 1$	0,607922	1,800151	3,240545	
$\times 2$	1,143777	0,688678	0,474277	
x3	0,857509	1,114864	1,242921	
$\times 4$	1,193378	0,668372	0,446721	

Variable	Descriptive Statistics for Cluster 3 (Spreadsheet7) Cluster contains 9 cases			
	Mean	Standard Deviation	Variance	
$\times 1$	-0,177771	0,169788	0,028828	
$\times 2$	-0,988263	0,296445	0,087879	
$\times 3$	-0,893691	0,182917	0,033459	
$\times 4$	-0,408580	0,800979	0,641568	

Fig. 92. The descriptive statistics for each cluster

4.3.3. The list of cars included in each cluster can be obtained using the

 Members for each cluster \& distances button (group members and distances) (Fig. 93).| linker | Members of Cluster Number 1 (Spreadsheet7)
 and Distances from Respective Cluster Center
 Cluster contains 7 cases |
| :--- | :--- |
| | Distance |
| | 0,590336 |
| | 0,651721 |
| Olds | 0,204199 |
| Pontiac | 0,276734 |
| Toyota | 0,594881 |
| Ww | 0,327158 |
| Volvo | 0,284542 |

linkage	Members of Cluster Number 2 (Spreadsheet7) and Distances from Respective Cluster Center Cluster contains 6 cases
	Distance
	0,486796
	1,223808
Chrysler	0,534555
Ford	0,645836
Mazda	0,755188
Porsche	1,935908

Fig. 93. The members of each cluster

Fig. 93. (the end)
Fig. 93 shows that the representative for the first cluster is the car model Olds, for the second once it is Buick, for the third cluster it is BMW. A comparative analysis of the Euclidean distances allowed us to conclude that the built-up clusterization is qualitative, as evidenced by a significant excess of distance between groups and within them.
4.3.4. To construct a graph showing the character of the breakdown of cars into clusters according to the level of insurance risk, the Graph of means button is used (Fig. 94).

Fig. 94. The graphs of average values of indicators for $\mathbf{3}$ clusters

Fig. 94. (the end)
Analyzing the results we can give the recommendations presented in Table 17.

Table 17

The general characteristics of the insurance risk clusters

Cluster number	List of car models included in the cluster	Key characteristics of the class	Recommendation
The first cluster	Honda, Olds, Mercedes, VW, Pontiac, Toyota, Volvo	This group is characterized by the presence of budget models of cars owned by middle-aged drivers with sufficient driving experience. Most cars have low mileage	Maintain all indicators at the same level
The second cluster	Buick, Corvette, Chrysler, Ford, Mazda, Porsche	This group is characterized by the presence of expensive cars owned by mature drivers with significant driving experience	Maintain indicators X1 - X3 at the same level and try to decrease X4 - the car age
The third cluster	Acura, Audi, BMW, Dodge, Eagle, Isuzu, Mitsubishi, Nissan, Saab	This group is characterized by the presence of models of middle-class cars, which belong to younger drivers with little driving experience. Most cars have an average age of use	Try to increase indicator X3 and decrease indicators X1, X4.

Thus, the cars and their owners were divided into classes, each of which corresponds to a certain risk group. Observations in the same group are characterized by the same probability of an insured event, which may later become a reminder during the insurance assessment of the car.

Task 3. Based on the analysis of the dendrogram shown in Fig. 95, draw a conclusion about the number of clusters in the population under study. Justify your answer.

Fig. 95. The vertical dendrogram
Task 4. Using the data in Table 18 and the methods of hierarchical clustering, classify the countries of the world according to the level of education of the population.

Table 18
The indicators of the quality of education of the population

Countries	Level of employment	Unemployment rate	The number of people who graduated from HEI, thousand people	The number of permanent residents, people
1	2	3	4	5
Austria	71.5	6.0	422	8662588
Belgium	62.3	7.8	488	11291746
Greece	52.0	23.5	659	10846979

Table 18 (the end)

1	2	3	4	5
Denmark	74.9	6.2	291	5699220
France	64.6	10.1	2338	66539000
Germany	74.7	4.1	2780	81292400
Italy	57.2	11.7	1872	60685487
Poland	64.5	6.2	1902	38484000
Spain	60.5	19.6	1959	46423064
Sweden	76.2	7.0	436	9838480
Slovakia	64.9	6.6	209	9838480
United Kingdom	75.3	3.9	2380	65572409
Czech Republic	72	3.4	427	10541466
Ireland	64.7	5.4	199	4635400
Switzerland	79.6	3.3	279	8306200
Finland	69.2	7.3	309	5496591

Task 5. Based on the results of the research, the data were obtained on the following indicators: population (X1), GDP per capita (X2), exports of goods and services (X3), the ratio of students to teachers (number of students per teacher) (X4) and the number of doctors per 1000 people (X5) (Table 19). Classify 22 countries according to their level of development, using the methods of hierarchical and non-hierarchical clustering.

Table 19
The initial data

Counties	X1	X2	X3	X4	X5
1	2	3	4	5	6
Algeria	35978000	4480.7245	61975371709.730	16.8079	1.207
Angola	18992708	3587.8838	51572818660.867	27.2341	0.1311
Azerbaijan	8997586	5842.8058	28728665753.083	8.0237	3.6629
Canada	34108752	47450.3185	471736717163.276	18.1009	2.0384
China	1339724852	4550.4536	1654815752520.770	15.46166	1.4627
France	62791013	40638.3340	707910169575.170	12.68018	3.0134
Georgia	4436391	3233.2959	4034786511.811	7.5016	4.3073
Germany	81802257	41531.9342	1445674190819.170	12.90596	3.7536
Hungary	10014324	13113.5260	107203863216.488	10.19559	2.8894
Iceland	317630	43024.9238	7113368298.680	11.0971	3.5654
India	1182105564	1357.5637	375353472834.938	25.32821	0.6634

Table 19 (the end)

1	2	3	4	5	6
Japan	128056000	44507.6764	857109901329.889	11.8603	2.2471
Kazakhstan	16442000	9070.4883	65502334498.320	7.5036	3.4867
Moldova	3563695	1958.1337	1941104508.743	10.4993	2.439
New Zealand	4367800	33692.0108	44356174905.218	14.50074	2.6114
Russia	142849472	10674.9972	445513189914.350	8.5003	2.3984
Slovakia	5424925	16727.2913	69727530607.620	12.03266	3.305
Switzerland	7785806	74605.7745	373420687857.230	9.3983	3.8053
Turkey	73722988	10672.3892	157844709209.476	18.1024	1.7068
Ukraine	45782592	2965.1424	63998815464.489	6.5301	3.483
United States	309349689	48466.8234	1846280000000.000	14.3967	2.4383
Uzbekistan	28001400	1634.3121	13030252051.819	13.00627	2.5352

Task 6. Using the data in Table 18 and methods of non-hierarchical clustering, classify the countries of the world according to the level of education of the population.

Task 7. Based on the analysis of the dendrogram shown in Fig. 96, draw a conclusion about the number of clusters in the population under study. Justify you answer.

Fig. 96. The horizontal hierarchical dendrogram

The list of questions for independent work

1. What is the difference between clustering and classification?
2. Name the main properties of the cluster.
3. List the main uses of cluster analysis.
4. List the stages of the formation of the matrix of observations.
5. List the distances that are most often used in the multidimensional analysis.
6. What is the matrix of distances?
7. What is the difference between calculation of the Chebyshev distance and the calculation of the average absolute difference in values of signs?
8. Name the attributes of the matrix of distances.
9. List the cluster analysis methods.
10. Provide the implementation stages of the k-medium method.

Topic 7. Data recognition and discriminatory analysis

Task 1. Check the quality of clustering of the cars and their owners into insurance risk groups (see Table 17). The initial data are presented in Table 16.

Guidelines

Normalized initial data about 22 car models, which were distributed in tree groups by the method of cluster analysis (in terms of insurance risk), are shown in Fig. 97.

Discriminant analysis is a multidimensional statistical method that allows you to study the differences between two or more groups of objects in several variables at a time. The main task of discriminant analysis is to study group differences, that is, to discriminate objects based on certain attributes.

With the help of discriminant analysis, two types of problems are solved:

1. Search for a function according to which the object belongs to one of the known classes.
2. Classification of new objects according to the found rules.

Let's consider an example of using discriminant analysis to solve the problem of object recognition.

The choice of the module Discriminant analysis is possible through the Statistics / Multivariate Exploratory Techniques / Discriminant analysis menu (Fig. 98).

III Data: Spreadsheet2* (5v by 22c)					\square -
	X1	X2	X3	X4	Cluster
Acura	0,521	25	3	10	3
Audi	0,666	24	3	1	3
BMW	0,496	29	3	4	3
Buick	0,614	50	25	9	2
Corvette	1,235	62	38	15	2
Chrysler	0,614	43	21	9	2
Dodge	0,706	26	1	5	3
Eagle	0,614	20	1	1	3
Ford	0,706	54	10	11	2
Honda	0,429	38	8	7	1
Isuzu	0,798	27	5	3	3
Mazda	0,126	51	20	10	2
Mercedes	1,051	46	25	4	1
Mitsubishi	0,614	28	2	7	3
Nissan	0,429	31	6	6	3
Olds	0,614	45	16	4	1
Pontiac	0,614	40	16	2	1
Porsche	3,454	41	8	8	2
Saab	0,588	29	5	2	3
Toyota	0,059	36	13	1	1
WW	0,706	38	15	6	1
Volvo	0,219	42	19	4	1

Fig. 97. The initial data with cluster distribution

Fig. 98. Launching the discriminant analysis in Statistica 10.0

The screen for the Discriminant Function Analysis module will appear, with the help of which you can perform the following functions:

- open the data file using the Open Data button;
- select a variable - Variables;
- determine the number of groups of objects being analyzed - Codes for grouping variable;
- permanently remove variables from the Casewise list or replace them with the average Mean substitution;
- specify the conditions for selecting observations from the database Select Cases;
- make weight of variables by selecting them from the list - W.

You can use the Variables button to select a Grouping and an Independent variable (Fig. 99).

Fig. 99. Selection of variables
Using the buttons located in the Variables selection panel it is possible:

1) to select all variables - Select All;
2) to view the type of name - Spread;
3) to see additional information on the Zoom variable.
4) to define the model by clicking the OK button.

The Model Definition dialog box that is used to select a model is shown in Fig. 100.

Fig. 100. Choosing the parameters of the discriminant analysis
On the Advanced tab, you can specify the method that will be used to select meaningful variables (Fig. 101).

Fig. 101. Choosing the method of discriminant analysis

The following methods may be used:

- Standard. All variables are included in the model at the same time;
- Forward stepwise. At each step in the model, a variable with a maximum F value is selected. The procedure ends when all variables whose values F are greater than the values specified in the F to enter field are included in the model;
- Backward stepwise (step-by-step). At each step, all variables are selected in the model, which are then deleted depending on the value of F. The steps end when there are no variables with F values less than those specified by the user in the F to remove field.

The Number of steps field determines the maximum number of analysis steps that the procedure ends in.

The Tolerance field allows you to exclude non-informative variables from the model. If the tolerance is less than the value of 0.01 , the variable is considered non-informative and not included in the model.

As a method of analysis, choose Standard. According to the results obtained during the calculations presented in the window Discriminant Function Analysis Results (Fig. 102), it is possible to obtain the following information:
the number of variables in the model: 4;
the value of Wilks' lambda: 0.0870799;
the approximate value of F-statistics, which is related to Wilks' lambda (Approx. F $(8 ; 32)$) $=9.555047$;
the significance level of F-criterion $p<0.0000$ for the obtained value of 9.555047 .

Fig. 102. The Discriminant function analysis results window

The criteria for assessing the quality of classification are based on the calculation of possible transitions of the analyzed objects from one class to another. The criteria are the following:

1) λ-statistics of Wilks (Wilks' lambda);
2) the significance of F-statistics $\left(\mathrm{F}_{\text {table }}<\mathrm{F}\right)$;
3) the Mahalanobis distance;
4) criterion x^{2}.

Values of Wilks' statistics (Wilks' lambda) are in the range [0; 1]. If Wilks' statistics is close to 0 , this indicates good discrimination, while values close to 1 indicate bad discrimination of the studied objects.

Thus, according to Wilks' lambda which is 0.087701 it is possible to conclude that the classification is correct.

Also, the significance of F -statistics confirms the existence of differences between groups. In our case, $\mathrm{F}_{\text {table }}(\alpha=0.05, \mathrm{k} 1=4$, $\mathrm{k} 2=22)=2.82$. So, $F_{\text {table }}<F(2.82<9.555047)$. Thus, the classification of the car models according to the insurance risk level is correct.

As a validation check, let's see the results of the classification matrix by clicking the Classification matrix button (Fig. 103), pre-selecting Same for all groups in the right-hand window of Discriminant Function Analysis Results (Fig. 104).

Fig. 103. The Classification matrix button

| | Classification Matrix (Spreadsheet2)
 Rows: Observed classifications | | |
| :---: | :---: | ---: | ---: | ---: |
| | | | |,

Fig. 104. The classification matrix results
By the results of the classification matrix, we can conclude that not all objects are correctly broken down into four groups by cluster analysis. If there are car models that are incorrectly assigned to the appropriate groups, see the classification of cases (Fig. 105).

Case	Classification of Cases (Spreadsheet2) Incorrect classifications are marked with *			
	Observed Classif.	$\begin{gathered} 1 \\ p=, 33333 \end{gathered}$	$\begin{gathered} 2 \\ p=, 33333 \end{gathered}$	$\begin{gathered} 3 \\ p=, 33333 \end{gathered}$
Acura	G 3:3	G_3:3	G_1:1	G_2:2
Audi	G_3:3	G_3:3	G_1:1	G_2:2
BMW	G_3:3	G_3:3	G_1:1	G_2:2
Buick	G_2:2	G_2:2	G_1:1	G_3:3
Corvette	G_2:2	G_2:2	G_1:1	G_3:3
*Chrysler	G_2:2	G_1:1	G_2:2	G_3:3
Dodge	G_3:3	G_3:3	G_1:1	G_2:2
Eagle	G_3:3	G_3:3	G_1:1	G_2:2
Ford	G_2:2	G_2:2	G_1:1	G_3:3
Honda	G_1:1	G_1:1	G_3:3	G_2:2
Isuzu	G_3:3	G_3:3	G_1:1	G_2:2
Mazda	G_2:2	G_2:2	G_1:1	G_3:3
Mercedes	G_1:1	G_1:1	G_2:2	G_3:3
Mitsubishi	G_3:3	G_3:3	G_1:1	G_2:2
Nissan	G_3:3	G_3:3	G_1:1	G_2:2
Olds	G_-1:1	G-1:1	G_2:2	G_3:3
Pontiac	G_1:1	G_1:1	G_2:2	G_3:3
Porsche	G_2:2	G_2:2	G_1:1	G_3:3
Saab	G_3:3	G_3:3	G_1:1	G_2:2
Toyota	G_-1:1	G_1:1	G_3:3	G_2:2
W	G-1:1	G-1:1	G_3:3	G_2:2
Volvo	G_1:1	G_1:1	G_2:2	G_3:3

Fig. 105. The classification of cases
In Fig. 105, incorrectly assigned objects are marked with an asterisk (*). So, in our case only one object is not in its cluster (group) - Chrysler. According to the obtained results (see Figs. 104, 105), this car model must be transferred to the 1 st cluster.

After transferring Chrysler to the 1st cluster and re-performing the discriminant analysis, we obtain the following result (Fig. 106).

Fig. 106. New results of the discriminant analysis

Thus, the task of getting the correct groups is complete.
A discriminant function is a linear combination of a certain set of features which are called classification features and on the basis of which classes of objects that are homogeneous in some properties are identified.

To do this, in the Discriminant Function Analysis Results window, click Classification functions (Fig. 107); a window will appear, from which it is possible to write the classification functions for each class.

Fig. 107. The classification functions
Based on the results in Fig. 107, let's build classification functions:
car models with low level of the insurance risk $=7.7642 \mathrm{X} 1+4.0530 \mathrm{X} 2-$ - 1.3343X3-1.4022X4;
car models with high level of the insurance risk $=11.148 \mathrm{X} 1+4.967 \mathrm{X} 2-$ - 1.693X3-1.009X4;
car models with middle level of the insurance risk $=5.7818 \mathrm{X} 1+$ $+2.9961 \mathrm{X} 2-1.2373 \times 3-0.7446 \mathrm{X} 4$.

You have obtained the coefficients for each variable and each discriminant function. They can also be interpreted in the usual way: the higher the standardized coefficient, the greater the contribution of the corresponding variable to the discrimination of the population.

For more detailed information, it is possible to review the results of a canonical analysis that can be performed if at least three groups have been selected and at least two variables in the model are selected by clicking the Perform canonical analysis button (Fig. 108).

Fig. 108. Choosing the canonical analysis

A canonical analysis window appears in which the Scatterplot of canonical scores option is possible to construct the next scatter plot for values. With this diagram, it is possible to determine the contribution that each discriminating function makes to the distribution between the groups (Fig. 109).

Select canonical roots for...		? \times
First root (X):	Second root	QK
$\begin{array}{\|l\|} \hline \text { Root 1 } \\ \hline \text { Root 2 } \\ \text { Root 3 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Root 1 } \\ \hline \text { Root 2 } \\ \hline \text { Root 3 } \\ \hline \end{array}$	Cancel
		The scatterplot will be produced for the selected canonical roots

Fig. 109. Selection the parameters of the canonical analysis
The graph of scattering of canonical values for canonical roots is given in Fig. 110.

Fig．110．Visualization of the canonical analysis
Also，determine whether the constructed discriminant functions are statistically significant．To do this，click on the Chi－square criteria for remote roots from the results window（Fig．111）．

䐴 Canonical Analysis：Spreadsheet2	x
Quick｜Advanced［ Canonical scores	
Smammary Chi square tests of successive roots	Cancel
層 Coefficients for canonical variables	因 Options－

	Chi－Square Tests with Successive Roots Removed（Spreadsheet2）						
Roots Removed	Eigen－ value	Canonicl R	Wilks＇ Lambda	Chi－Sqr．	df	p－value	
0	7,611915	0，940150	0，070205	46，48584	8	0，000000	
1	0，653984	0，628808	0，604601	8，80577	3	0，031988	

Fig．111．Checking the statistical significance of the discriminant function

In this example, the discriminant functions are statistically significant.
Conclusion. The classification of car models according to the level of insurance risk by the method of cluster analysis is adequate and correct. In the course of discriminant analysis, some functions were obtained that can be used in the future to assign a certain (new or not participating in the analysis) model of car to one of the obtained classes (clusters, groups).

Task 2. According to the results of the cluster analysis, 15 countries of the world were divided according to the level of energy security into 4 clusters (groups) based on the following indicators:

1) the share of their own sources in the balance of fuel and energy resources of the state, \% (X1);
2) the share of the dominant fuel resource in the consumption of fuel and energy resources, \% (X2);
3) energy intensity of GDP, kg of conventional fuel / UAH (X3);
4) the volume of coal production, million tons (X4);
5) the degree of provision of fuel and energy resources (X5). The initial data are presented in Fig. 112.

	$\begin{gathered} 1 \\ \times 1 \end{gathered}$	$\begin{array}{r} 2 \\ \times 2 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ \times 3 \\ \hline \end{array}$	$\begin{gathered} 4 \\ \times 4 \\ \hline \end{gathered}$	$\begin{array}{r} 5 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{\|c} 6 \\ \# \text { Cluster } \end{array}$
Austria	-0,17076	-0,56815	-0,67541	-0,39902	-0,00755	1
Belgium	-0,73874	-0,50982	-0,66688	-0,75668	-0,06092	1
Bulgaria	-1,13942	0,572676	-0,47012	-0,29163	-1,01414	1
Finland	1,000142	-0,46084	-0,68834	-0,4186	-0,08932	3
France	0,511704	-0,57889	-0,68519	-0,26363	-1,11444	3
Germany	-0,86193	-0,5448	0,657549	-0,37777	-0,39445	
Italy	-0,88803	-0,5482	-0,68629	-0,5984	0,165506	1
Poland	-0,6907	-0,20477	2,505087	0,21091	-0,34177	4
Spain	-0,31802	-0,52692	1,290053	-0,45981	-0,5206	4
Sweden	2,336278	-0,55425	-0,68834	-0,01512	-0,47917	3
Switzerland	1,276589	-0,63555	-0,68834	-0,25047	-0,47298	3
UK	-1,14577	-0,57412	-0,22516	1,577936	1,551189	2
Belorussia	0,548901	0,822519	-0,68834	-0,60736	0,181907	3
Russia	0,223215	1,60115	1,135912	3,020361	2,860878	2
Ukraine	0,05654	2,709977	0,573823	-0,37072	-0,26414	4

Fig. 112. The results of cluster analysis
Under the condition of the task, it is necessary to assign two countries: Moldova and the Czech Republic to already known groups received in the previous task. The data for classification are given in Table 20.

The input data

Countries	X1	X2	X3	X4	X5
Moldova	0.43706	72.4375	0	0.612348	1.039504
Czech Republic	0.39501	13.20648	7.73954	0.98600	1.006457

Guidelines

Now, let's look at an example of the use of discriminant analysis to solve the problem of classification of new objects according to the found rules.

First, we need to enter new data into the already created table in Statistica 10.0 (Fig. 113).

III Data: Spreadsheet12* (6 v by 17c)						
	$\begin{gathered} 1 \\ \mathrm{X} 1 \end{gathered}$	$\begin{gathered} 2 \\ \times 2 \end{gathered}$	$\begin{gathered} 3 \\ \times 3 \end{gathered}$	$\begin{gathered} \hline 4 \\ \times 4 \end{gathered}$	$\begin{gathered} 5 \\ \times 5 \end{gathered}$	6 Cluster
Austria	0,512517	8,139704	28,08643	0,657682	1,229883	1
Belgium	0,441011	11,18419	46,6101	0,423147	1,198028	1
Bulgaria	0,390566	67,68311	473,7965	0,728101	0,629035	1
Finland	0,659931	13,74058	0	0,644842	1,181073	4
France	0,598438	7,578963	6,85112	0,746463	0,569163	4
Germany	0,425501	9,358731	2922,118	0,671615	0,998937	1
Italy	0,422215	9,180896	4,465834	0,526936	1,333184	1
Poland	0,447059	27,10571	6933,373	1,057638	1,030381	3
Spain	0,493978	10,29191	4295,369	0,61782	0,923633	3
Sweden	0,828147	8,865035	0	0,909419	0,948364	4
Switzerland	0,694735	4,621731	0	0,75509	0,952061	4
United Kingdom	0,389766	7,828034	1005,633	1,954056	2,160322	2
Belarus	0,603121	80,72323	0	0,521061	1,342974	4
Russia	0,562118	121,3625	3960,709	2,899916	2,942098	2
Ukraine	0,541134	179,2357	2740,338	0,676241	1,076723	3
Moldova	0,43706	72,4375	0	0,612348	1,039504	
Czech Republic	0,39501	13,20648	7,73954	0,986	1,006457	

Fig. 113. The initial data

Now, we first perform a discriminant analysis for all countries, and in the results window, calculate the a posteriori probabilities, the values of which are given in Fig. 114.

The next step is to calculate the distances from the new cases to the group centers. The results of the calculations are shown in Fig. 115. To do this, select the Squared Mahalanobis distances button (the distance of Mahalanobis determines the affiliation of a variable to a particular class).

Case	Posterior Probabilities (Spreadsheet12) Incorrect classifications are marked with *				
	Observed Classif.	$\begin{gathered} G _1: 1 \\ p=, 25000 \end{gathered}$	$\begin{gathered} \mathrm{G}, 2: 2 \\ \mathrm{p}=, 25000 \end{gathered}$	$\begin{gathered} \text { G_3:3 } \\ p=, 25000 \end{gathered}$	$\begin{gathered} G, 4: 4 \\ p=, 25000 \\ \hline \end{gathered}$
Austria	G $1: 1$	0,998062	0,000000	0,000000	0,001938
Belgium	G_1:1	0,999516	0,000000	0,000000	0,000484
Bulgaria	G_1:1	0,999952	0,000000	0,000000	0,000048
Finland	G_4:4	0,001817	0,000000	0,000000	0,998183
France	G_4:4	0,009255	0,000000	0,000000	0,990745
Germany	G_1:1	0,973026	0,000000	0,020573	0,006401
Italy	G_1:1	0,999995	0,000000	0,000000	0,000005
Poland	G_3:3	0,000000	0,000000	1,000000	0,000000
Spain	G_3:3	0,000000	0,000000	0,999999	0,000001
Sweden	G_4:4	0,000000	0,000000	0,000000	1,000000
Switzerland	G_4:4	0,000127	0,000000	0,000000	0,999873
United Kingdom	G_2:2	0,000000	1,000000	0,000000	0,000000
Belarus	G_4:4	0,020246	0,000000	0,000161	0,979593
Russia	G_2:2	0,000000	1,000000	0,000000	0,000000
Ukraine	G_3:3	0,000000	0,000000	1,000000	0,000000
Moldova	---	0,999827	0,000000	0,000000	0,000173
Czech Republic	---	1,000000	0,000000	0,000000	0,000000

Fig. 114. The table of a posteriori probabilities

Case	Squared Mahalanobis Distances from Group Centroids Incorrect classifications are marked with *				
	Observed Classif.	$\begin{gathered} G _1: 1 \\ p=, 25000 \end{gathered}$	$\begin{gathered} G, 2: 2 \\ p=, 25000 \end{gathered}$	$\begin{gathered} \text { G_3:3 } \\ p=, 25000 \end{gathered}$	$\begin{gathered} G-4: 4 \\ p=, 25000 \end{gathered}$
Austria	G 1:1	2,0729	234,4760	52,8876	14,5610
Belgium	G_1:1	0,9494	264,7849	41,7228	16,2165
Bulgaria	G_1:1	5,3179	250,3143	47,7357	25,2173
Finland	G_4:4	13,4271	329,3805	33,5037	0,8098
France	G_4:4	12,9011	319,6329	37,9240	3,5545
Germany	G_1:1	7,1967	322,9463	14,9096	17,2445
Italy	G_1:1	3,0716	215,6587	61,8547	27,4519
Poland	G_3:3	42,8075	424,9053	4,2671	44,3261
Spain	G_3:3	39,6876	464,0628	1,7786	29,4089
Sweden	G_4:4	39,9212	387,5931	47,4028	5,5078
Switzerland	G_4:4	18,2628	337,6522	37,5058	0,3157
United Kingdom	G_2:2	223,2886	4,5423	423,7596	311,0095
Belarus	G_4:4	13,0294	348,4689	22,6968	5,2710
Russia	G_2:2	293,6248	4,5423	491,3669	380,9826
Ukraine	G_3:3	49,6542	481,9426	5,8024	36,2577
Moldova	----	1,3132	250,1662	43,6811	18,6321
Czech Republic	---	25,4861	130,4643	121,4663	64,1878

Fig. 115. The table of distances from the new case to the centers
of the groups
The maximum value of a posteriori probabilities (see Fig. 114) and the minimum distance from the new case to the centroids of groups (see Fig. 115) correspond to cluster No. 1. Therefore, the studied countries Moldova and the Czech Republic should be assigned to the first cluster - countries with an average level of energy supply and a high level of use of energy-saving technologies.

Task 3. Using the methods of discriminant analysis of the program Statistica 10.0 and the statistical data of the website of the State Statistics Service of Ukraine [19], find information about main indicators that characterize the level of socioeconomic growths of regions and search for a function according to which the object (regions) belongs to one of the known classes.

Task 4. Using your own information space of research make discriminant analysis and provide an economic interpretation of the results of the factor analysis.

Task 5. Using the data in Table 21 and methods of discriminant analysis, check the quality of clustering and learn to classify objects based on the discriminant function.

Table 21
The indicators of the quality of education of the population

Countries	Level of employment	Unemployment rate	The number of people who graduated from HEl, thousand people	The number of permanent residents, people	Cluster No.
Austria	71.5	6.0	422	8662588	2
Belgium	62.3	7.8	488	11291746	2
Greece	52.0	23.5	659	10846979	1
Denmark	74.9	6.2	291	5699220	2
France	64.6	10.1	2338	66539000	1
Germany	74.7	4.1	2780	81292400	1
Italy	57.2	11.7	1872	60685487	1
Poland	64.5	6.2	1902	38484000	1
Spain	60.5	19.6	1959	46423064	1
Sweden	76.2	7.0	436	9838480	2
Slovakia	64.9	6.6	209	9838480	2
United Kingdom	75.3	3.9	2380	65572409	1
Czech Republic	72	3.4	427	10541466	2
Ireland	64.7	5.4	199	4635400	2
Switzerland	79.6	3.3	279	8306200	2
Finland	69.2	7.3	309	5496591	2

Task 6. Check the quality of clustering by the methods of discriminant analysis and learn to classify objects by discriminant function. The initial data is presented in Table 22.

Table 22
The distribution of American states according to the level of development of Agile IT Project Management

States of America	Main indicators that characterize the level of agile					Cluster development
	X1	X 2	X 3	X 4	X 5	
1	2	3	4	5	6	7
Arizona	70.53	57.8	2900	33.26	48.7	2
Arkansas	80.4	74.5	1421	10.12	49.2	2

Table 22 (the end)

1	2	3	4	5	6	7
California	92.3	40.1	5075	10.84	75.4	3
Colorado	75.21	70	2111	15.63	51.3	2
Connecticut	63.2	71.2	1100	10.97	49.5	1
Delaware	64.79	65.3	700	11.99	48.8	1
District of Columbia	65.83	34.8	500	13.4	43.44	1
Florida	64.51	57.9	1200	13.99	46.3	1
Georgia	76.31	55.9	400	11.4	58.56	3
Hawaii	64.38	22.77	600	11.39	39.19	1
Idaho	78.37	84	508	19.75	40.2	2
Illinois	76.4	63.7	865	14.57	48.9	2
Indiana	68.72	81.5	658	16.96	46.3	2
Iowa	68.99	88.7	583	9.46	47.7	2
Kansas	60.33	78.2	862	16.21	47.3	1
Kentucky	70.36	86.3	913	12.7	52.8	2
Louisiana	63.48	60.3	979	15.74	43.2	1

Task 7. Using the Internet resources, find information about the level of development of Agile IT Project Management in other US states and divide them into already known groups received in the previous task (Table 22).

The list of questions for independent work

1. Formulate the definition of discriminant analysis.
2. What approaches are used for conducting discriminant analysis?
3. What is the general view of discrimination?
4. What is the concept of centroid?
5. What characterizes the interclass variation?
6. What are the main tasks of discriminant analysis?
7. What are the criteria for checking the quality of discrimination?
8. Give a definition of the discriminant function.
9. In what limits is Wilks' lambda measured?
10. What is the difference between standardized and structural coefficients of the discriminant function?

References

Main

1. Антохонова И. В. Методы прогнозирования социально-экономических процессов : учебное пособие / И. В. Антохонова. - Улан-Удэ : Изд-во ВСГТУ, 2004. - 212 с.
2. Бабешко Л. О. Основы эконометрического моделирования : учебное пособие / Л. О. Бабешко. - Изд. 3-е. - Москва : КомКнига, 2007. - 432 с.
3. Вітлинський В. В. Моделювання економіки : навч. посіб. / В. В. Вітлинський. - Київ : КНЕУ, 2003. - 408 с.
4. Геєць В. М. Моделі і методи соціально-економічного прогнозування : підручник / В. М. Геєць, Т. С. Клебанова, О. І. Черняк та ін. - 2-ге вид., виправ. - Харків : ВД "ІНЖЕК", 2008. - 396 с.
5. Єріна А. М. Статистичне моделювання та прогнозування : навч. посіб. / А. М. Єріна. - Київ : КНЕУ, 2001. - 170 с.
6. Клебанова Т. С. Эконометрия : учебно-методическое пособие для самостоятельного изучения дисциплины / Т. С. Клебанова, Н. А. Дубовина, Е. В. Раевнева. - Харьков : Изд. Дом "ИНЖЭК", 2003. - 132 с.
7. Магнус Я. Р. Эконометрика: начальный курс : учеб. / Я. Р. Магнус, П. К. Катышев, А. А. Пересецкий. - 8-е изд., испр. - Москва : Дело, 2007. 504 c.
8. Многомерный статистический анализ в экономике : учеб. пособие для вузов / Л. А. Сошникова, В. Н. Тамашевич, Г. Уебе и др. ; под ред. проф. В. Н. Тамашевича. - Москва : ЮНИТИ-ДАНА, 1999. - 598 с.
9. Присенко Г. В. Прогнозування соціально-економічних процесів : навч. посіб. / Г. В. Присенко, Є. І. Равікович. - Київ : КНЕУ, 2005. - 378 с.
10. Статистика : навчальний посібник / під ред. д-ра екон. наук, професора О. В. Раєвнєвої. - Харків : ХНЕУ, 2010. - 520 с.

Additional

11. Андрієнко В. Ю. Статистичні індекси в економічних дослідженнях / В. Ю. Андрієнко. - Київ : Академперіодика, 2004. - 536 с.
12. Дуброва Т. А. Факторный анализ с использованием пакета "STATISTICA" : учебное пособие / Т. А. Дуброва, Д. Э. Павлов, Н. П. Осипова. - МГУ экономики, статистики и информатики. - Москва : Финансы и статистика, 2002. - 702 с.
13. Моделирование экономики : учебное пособие / Т. С. Клебанова, В. А. Забродский, О. Ю. Полякова и др. - Харьков : Изд-во ХГЭУ, 2001. 140 c.
14. Орлов А. И. Организационно-экономическое моделирование : учебник : в 3 ч. / А. И. Орлов. - Москва : Изд-во МГТУ им. Н. Э. Баумана. 2009. - 254 с.
15. Халафян A. A. STATISTICA 6. Статистический анализ данных / А. А. Халафян. - Москва : ООО "Бином-Пресс", 2008. - 512 с.
16. Dickey D. A. Distribution of the estimators for autoregressive time series with a unit root / D. A. Dickey, W. A. Fuller // Journal of the American Statistical Association. - 1979. - Vol. 74. - P. 427-431.
17. Granger C. W. J. Forecasting economic time series / C. W. J. Granger, P. Newbold. - 2nd ed. - New York : Academic Press, 1986. - 324 p.
18. Lachenbruch P. A. Discriminant Analysis / P. A. Lachenbruch. New York : Hafner, 1974 - 234 p.

Information resources

19. Офіційний сайт державної служби статистики України [Електронний pecypc]. - Режим доступу : http://www.ukrstat.gov.ua.
20. Электронный учебник StatSoft [Электронный ресурс]. - Режим доступа: http://www.statsoft.ru.

Content

Introduction 3
Content module 1. The methodological bases of statistical modeling and forecasting 4
Topic 1. The categorical basis of statistical modeling and forecasting 4
Topic 2. Regression models as a means of researching economic processes 10
Topic 3. Modeling and forecasting the development of trends 17
Topic 4. Models of adaptive forecasting and an integrated model of autoregression 37
Content module 2. Modeling and forecasting of multidimensional processes 61
Topic 5. Factor analysis of data 61
Topic 6. Cluster analysis as a means of forming homogeneous data groups 72
Topic 7. Data recognition and discriminatory analysis 89
References 105
Main 105
Additional 105
Information resources 106

НАВЧАЛЬНЕ ВИДАННЯ

СТАТИСТИЧНЕ МИСЛЕННЯ ДЛЯ НАУКИ ПРО ДАНІ

Методичні рекомендації до самостійної роботи студентів спеціальності 122 "Комп'ютерні науки" другого (магістерського) рівня
(англ. мовою)

Самостійне електронне текстове мережеве видання

Укладачі: Раєвнєва Олена Валентинівна Дериховська Вікторія Ігорівна

Відповідальний за видання О. В. Раєвнєва

Редактор 3. В. Зобова
Коректор З. В. Зобова

Подано завдання для самостійної роботи з навчальної дисципліни та методичні рекомендації до їх виконання, що допоможуть студентам набути практичних навичок використання інструментів економіко-математичного моделювання під час вивчення складних соціально-економічних процесів та систем.

Рекомендовано для студентів спеціальності 122 "Комп'ютерні науки" другого (магістерського) рівня.

План 2021 р. Поз. № 138 ЕВ. Обсяг 108 с.
Видавець і виготовлювач - ХНЕУ ім. С. Кузнеця, 61166, м. Харків, просп. Науки, 9-А
Свідоцтво про внесення суб'єкта видавничої справи до Державного реєстру Дк № 4853 від 20.02.2015 р.

