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1. Introduction

One of the urgent problems of management is to balance 
the production resources of an enterprise and the demand for 
its products, which is characterized by instability and ran-
dom changes. The tasks of managing production resources 
are distributed between three organizational levels: strate-
gic, tactic, and operational. These levels ensure the achieve-
ment of the company’s objectives in the long, medium- and 
short-term perspectives, respectively [1].

The following things are developed at the strategic level: 
a long-term forecast of demand for the company’s products; 
commodity policy, involving the introduction of new types 
of products into production; a program for the development 
of production capacities, taking into consideration the devel-

opment of new technologies. In the course of tactic planning, 
a company develops a program for manufacturing products 
for a medium-term period, coordinates with suppliers the 
terms of supply of circulating material resources, establishes 
outsourcing volumes, and dynamics of the staff number of 
production personnel. Operative production planning is 
usually divided into volume-nomenclature and calendar. 
Operative volume-nomenclature plans determine current 
production volumes based on the incoming orders for the 
company’s products, its production facilities, and forecasts 
of future orders. In the course of calendar planning, the 
volume-nomenclature plan is detailed to the terms of manu-
facture of certain products, assembly units, and parts [1, 2].

During the implementation of the production program 
under conditions of unstable demand, losses arise due to the 
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This paper examines the process of operative 
planning of the production of an industrial company 
under conditions of random fluctuations in current 
demand. It is shown that under these conditions there 
are losses, the size of which depends on the adopted 
policy of operation activity. The policy of operation 
activity is understood as the rule of making decisions 
on current production volumes based on information 
about incoming orders, probable volumes of future 
demand, and possible losses due to the deviation of 
capacity load from the normative one.

In the paper, it is proposed to assess the effec-
tiveness of each policy of operation activity using the 
indicator of the limit average economic effect per unit 
of time for an infinite number of periods. An original 
approach to assessing the effectiveness of the policy 
of operation activity with product reservation was 
developed. It was shown that when using this policy, 
there is an effect of product “overstock” on the chains 
of successive periods. It was proposed to select the 
initial reserve so that the probability of completion of 
the reservation chain for a given number of periods 
should be close to unity. Such an approach creates 
an opportunity to determine the expected economic 
effect on the chains of reservation of various product 
types and, as a result, to assess the policy effective-
ness in general.

An assessment of the effectiveness of the policy 
with reservation in the form of the dependence of the 
policy effectiveness indicator on the values of cost 
indicators was obtained. Comparison of this assess-
ment with a similar assessment of the effectiveness of 
the policy of fulfilling incoming orders allowed finding 
a condition under which the policy with reservation is 
more profitable. It involves ensuring that the magni-
tude of losses per unit of production associated with 
the product stock storage does not exceed half the 
sum of the magnitude of losses per unit of production 
due to downtime and excess capacity load
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discrepancy between the production volumes established 
by the program and random magnitudes of the volumes of 
incoming orders. These losses arise either due to the lack 
of sale of part of the finished product (storage costs, funds 
“freezing”) or due to lost profit related to insufficient manu-
facturing of products if there is a demand for it.

Losses that arise during the implementation of the 
production program can be reduced during operative plan-
ning by changing the production volumes planned by the 
program. However, this adjustment of production volumes 
is associated with other losses. Losses from the downward 
change in production volume cause the payment of “unpro-
ductive” salary to personnel under conditions of downtime, 
the cost of storing unused working material resources, and 
“freezing” funds for their purchase. Losses from changes in 
the production volume towards increasing cause the need 
for additional payment to personnel for overtime work and 
the purchase of an additional amount of circulating material 
resources at increased prices [2].

Thus, under conditions of random demand, enterprises 
inevitably incur various kinds of losses. At the same time, a 
decrease in one type of loss leads to an increase in the losses 
of other types. That is why the problem of minimizing the to-
tal losses of an enterprise caused by the emerging deviations 
of the current volumes of demand from the normative load of 
production capacities is relevant.

In practice, different management approaches are used to 
reduce these losses, corresponding to different policies of op-
eration activity. Each policy of operation activity is charac-
terized by some ratio of different types of losses. That is why 
the choice of a set of policies of operation activity should be 
based on assessments of their effectiveness, taking into con-
sideration losses caused by unstable demand. In this regard, 
studies on assessing the effectiveness of different policies of 
operation activity (including the policy with product reser-
vation) under conditions of unstable demand are relevant.

2. Literature review and problem statement

The problem of reducing losses that arise in the course 
of operation activity under conditions of unstable demand is 
closely related to risk management. The basic concepts and 
conceptual apparatus of risk management in organizations 
are defined by the ISO 31000:2009 standard “Risk manage-
ment. Principles and guidelines” [3]. The standard can be 
applied to the entire organization and at all levels, as well as 
to specific functions, projects, and activities.

Modern methods of balanced management of produc-
tion resources correspond to the ERP (Enterprise Resource 
Planning) standards of information systems that provide 
comprehensive support of management for large and medi-
um-sized enterprises. Dozens of publications are devoted to 
the problems of implementation and development of infor-
mation systems that perform the ERP tasks. In particular, in 
paper [4], ERP is considered as a management concept aimed 
at improving business efficiency in general. However, one of 
the critical problems is the coordination of functional technol-
ogies that ensure the production process. These technologies 
include presentation of production plans in the context of 
calendar periods (Master Planning Scheduling); Material 
Requirement Planning; planning the requirements to ensure 
timely fulfillment of orders (Capacity Resource Planning). 
Note that the technologies of ERP systems really provide am-

ple opportunities for solving the calculation problems of pro-
duction planning under conditions of given levels of demand. 
However, they do not directly manage the risks that arise in 
the face of random fluctuations in current demand.

The concept of Sales & Operations Planning (S&OP) is 
based on a systemic approach to operation activity manage-
ment. In [5], the S&OP process is considered at three levels 
depending on the planning horizon. The long-term planning 
horizon for a typical S&OP process spans more than 18–
36 months. The Annual Action Plan (AOP) is the company’s 
medium-term goal of sales and supply. Short-term (monthly) 
plans of sales and operations are the means of gradually 
achieving the AOP goals. The S&OP goal for short-term pe-
riods of time is to determine the general level of production 
(production plan) and other activities to achieve the overall 
goals of profitability, productivity, and competitive time of 
order fulfillment.

The S&OP process is focused on establishing production 
rates that will allow achieving the goal of maintaining, in-
creasing, or decreasing inventories or accumulated reserves 
while maintaining the relative stability of personnel [5]. In pa-
per [6], it is noted that many professionals in the supply chain 
in recent years have been concerned with improving the link 
between supply and demand. An important task of the S&OP 
is to reduce losses from the imbalance in time of the capabil-
ities of the sales and production subsystems of an enterprise. 
However, the S&OP does not take into consideration the fact 
that the way of balancing the capabilities of these subsystems 
is determined by the policy of operation activity applied at an 
enterprise. S&OP does not offer methods and models to eval-
uate and choose the most effective operation policy.

Economic and mathematical methods for optimizing de-
cisions under conditions of incomplete information are often 
considered as mathematical models of management of risks 
of operation activity. They include deterministic approxima-
tion, stochastic programming, Markovian decision-making 
models, simulation modeling, etc. [7].

Most of the studies are devoted to the following aspects 
of operation activity management:

– determining the number of purchases of circulating 
material resources and their stocks; 

– determining the optimal size of a batch size of finished 
products or components; 

– planning the operation activity with reservation of 
finished products.

Stocks of materials and components make it possible 
to maintain the smooth operation of an enterprise in situa-
tions of supply failure, equipment breakdown, and demand 
fluctuations. At the same time, the availability of stocks 
is accompanied by the cost of their storage. The problems 
of optimizing the size of purchases of circulating material 
resources and their stocks were first studied in the de-
terministic formulation, later – taking into consideration 
uncertainty factors, in addition, taking into consideration 
non-deterministic demand [7].

The task of optimizing the size of a batch of finished 
products or components arises in cases where the transition 
to the production of the next batch of products requires the 
reconfiguration of machines. In this regard, there are con-
tradictions between the goals of reducing the cost of storing 
products and reducing the readjustment costs. The first goal 
is achieved by reducing the size of the produced batches of 
products, and the second, on the contrary, requires an in-
crease in the batch size.
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The studies on the planning of operation activity with 
the reservation of finished products take into consideration 
various factors that affect reservation effectiveness. Such 
factors include the cost of storing the manufactured prod-
ucts, the cost of stock creation, restrictions on production 
capacities, losses due to incomplete meeting the demand. 
To solve the problem of multi-product production planning, 
research [8, 9] uses the method of two-stage stochastic pro-
gramming. Research [8] determines the optimal decisions 
on supplies, production, and stocks over several planning 
periods, and the criterion is the minimum total costs of the 
system, taking into consideration the cost of storing stocks 
of materials and finished products. In article [9], the optimal 
distribution of the number of workers and production vol-
umes are determined.

Studies [2, 10] explore the problem of choosing the current 
production volumes under conditions of incompletely deter-
mined demand. At the same time, possible losses associated 
with the lack of sale of part of the finished product and with 
the lost profits from underproduction in the presence of de-
mand are taken into consideration. It was supposed that the 
goal of an organization was to obtain the maximum effect over 
a given period. The effect in the general form can be presented 
by the value of the known function f(η, y), the arguments of 
which are random magnitude η with probability density p(x) 
and parameter y of the made decision. In this case x∈X, y∈Y, 
where X is the set of possible implementations of random mag-
nitude η, Y is the set of possible values y. In this situation, the 
effect (the result of achieving the goal) when making any 
choice y turns out to be a random magnitude. The magnitude 
 ( ) ( ) ( ), d

x X

H y f y xx p x
∈

= ∫  will match the mathematic expecta-

tion of the effect for the chosen value of y. The solution ˆ,y  
which is optimal by the criterion of a maximum of the expect-
ed effect, was determined from the following formula: 

( ) ( ){ }ˆ max | .H y H y y Y= ∈
A more complex problem of choosing the current volumes 

of production is presented in the form of controlling the ran-
dom process taking place in the production system of an en-
terprise. The states of the production system are partly ran-
dom and partly under the control of the decision-maker. In 
each period t, the system is in a certain state xt and a deci-
sion-maker can choose any action yt, which is accessible for 
him in state xt of the system. In the following period t+1, the 
system randomly transfers to the new state xt+1. In this case, a 
decision-maker gets the award Et+1=fy(xt+1, yt) in the period 
t+1. In the problem of choosing actions (decisions) yt in recur-
rent periods t=1, 2, …, T, the aim of a decision-maker is to get 

the maximum award (effect) E in the time interval T, 
1

.
T

t
t

E E
=

= ∑
If for any period t, 1<t<T, random magnitude xt+1 is 

independent on states xs and decisions ys, s<t, the con-
trolled random process corresponds to the Markovian deci-
sion-making process. If the decision-making model for con-
trolling some random process corresponds to the Markovian 
decision-making process, this model is called.

The Markovian decision-making model was used in 
papers [11, 12] to find the optimal control of a dynamic 
system under the influence of random factors. Thus, in pa-
per [11], demand was described by a Markovian chain with 
two states, and the problem of finding the optimal batch 
size was formulated as a dynamic programming problem. 
Research [12] describes the probabilistic problem of optimal 
control with continuous time, in which parameters of output 

intensity and pricing policy act as management. In this case, 
demand is modeled by the Poisson probability distribution. 
The maximum long-term profit of an enterprise is the opti-
mality criterion.

The policy of operation planning (decision-making) in 
paper [13] implies rule φ of choosing decision yt in each peri-
od t, depending on the known state xt:yt=φ(xt) (t=1, 2,…, T). 
Designate as Φ the set of such policies φ in which the values 
of parameter xt (t=1, 2,…, T) of the state of the system are im-
plementations of some random magnitude and do not depend 
on decision yt in all periods. In this case, policies φ∈Φ turn 
out to be Markovian decision-making models. For them, 
it is fundamentally possible to find the magnitudes of the 
expected total effect E, and then choose the most effective 
policy from set Φ [13].

If policy φ is that decision yt in period t has an impact not 
only on state xt+1, but can also have an impact on subsequent 
situations, the corresponding decision-making process will 
not be Markovian. The study of such processes causes funda-
mental difficulties and is effective only in some cases.

3. The aim and objectives of the study

The purpose of this study was to analyze and assess the 
effectiveness of the policy of operation activity of an enter-
prise with the reservation of finished products. The obtained 
results of the study will allow increasing the validity of man-
agement decisions on the choice of the policy of operation ac-
tivity at an enterprise, taking into consideration the problem 
of minimizing losses under conditions of random demand.

To achieve the aim, the following tasks were set and solved:
– to analyze the process of operation activity with prod-

uct reservation, taking into consideration the emergence 
of chains of activity periods with a delay in selling created 
reserves under conditions of random fluctuations in demand;

– to determine the method for finding the maximum safe 
magnitude of the product stock on the condition of its full 
sale within a given number of planning periods;

– to carry out numerical calculations of finding the 
maximum safe magnitude of the product stock for the case 
of normal distribution of a random magnitude of demand;

– to determine the method for finding the limit values 
of the intensities of occurrence of various chains of activity 
periods for the selected maximum number of periods covered 
by reservation;

– to evaluate the efficiency of operation activity with the 
reservation of finished products based on the indicator of 
maximum effectiveness of operation activity.

4. The study materials and methods

4. 1. Research hypothesis
The object of the study was the processes of operation 

activity of an enterprise with the reservation of finished 
products. The main hypothesis of the study was the assump-
tion that the policy of operative planning of production with 
the reservation of finished products is effective under many 
conditions of operation activity of an enterprise.

The following assumptions were accepted:
– the normative production capacity of an enterprise co-

incides with the mathematical expectation of the magnitude 
of demand;  
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– the parameters of the law of distribution of the prob-
ability of demand magnitude quantity do not change when 
using the selected policy.

The source materials of the research were:
– the model of operative planning used directly or with 

minor modifications in papers [2, 12, 8, 10, 13]; 
– the results of the assessment of the effectiveness of pol-

icies of operative planning, given in [13] and used for their 
comparative analysis with the results of this research.

4. 2. The model of operative planning  
In accordance with the model of operative planning, the 

process of receipt and execution of orders for the company’s 
products is considered for T periods having the same dura-
tion. In each period t–1, orders for the company’s products 
are collected and the production volume is planned for the 
next period t. Periods for which the production volume is 
planned are called planning periods.

For each planning period, the model determines the set 
of permissible (implementable) decisions and the dependence 
of the operation effect (profit) on the decisions made.

The following designations were used in the model: u0 
is the number of products produced by an enterprise for the 
planned period at the normal (normative) load of production 
capacities; η is the total volume of orders received by the 
beginning of each period. When the volume of production u0 
and intensity of demand η are deterministic constants, and 
u0=η, the production capacity of an enterprise is used evenly 
with the normative load. If the magnitude of demand η is a 
variable random magnitude, the resources of an enterprise 
and the flow of orders will be balanced if u0=λη, where λη 
is mathematical expectation η. However, in this situation, 
there are losses associated with overload and an insufficient 
load of production capacity.

The following designations were introduced:
– xt is the volume of orders received by the beginning of 

planning period t;
– ut is the volume of production within planning period t; 
– zt is the magnitude of residues of the finished product 

by the beginning of period t;
– yt is the total amount of finished products which will 

be available within the considered period, yt=ut+zt.
The dependence of the operation effect Et, received at the 

end of period t, on magnitude xt of incoming orders and the 
planned amount yt of the finished product is determined by 
function f(xt, yt): 

 
( ) ( ) ( ) ( )1, , ,t t t t t t t t tE f x y f x y dy d x y q u= = = − − −  

if

;t tx y≥   (1)

( ) ( ) ( ) ( )2, , ,t t t t t t t t tE f x y f x y dx a y x q u= = = − − −  

if 

,t tx y≤   (2)

where f1(xt, yt), f2(xt, yt) are functions that determine effect 
Et respectively in cases of lost profits and of the presence of 
unsold products; d is the magnitude of profit from the sale 
of a unit of product at its production under conditions of a 
normative load of production capacity; a is the amount of 

losses associated with the storage of the stock of finished 
products during one planning period, calculated per unit 
of production; d(xt–yt) is the sum of losses (lost profits) 
from underproduction when there is a demand; q(ut) is the 
magnitude of losses caused by downtime and over normative 
load of production capacities, in this case, q(ut)=b(u0–ut), if 
u0≥ut, q(ut)=c(ut–u0), if u0≤ut; b is the magnitude of losses 
per unit of production caused by downtime; c is the magni-
tude of losses per unit of product caused by over normative 
load of production capacities.  

Magnitudes xt (t=1, 2, …, T) of the volume of orders were 
considered as sales in periods t=1, 2, …, T of random magni-
tude η with the known function of probability distribution 
Fη(x)=P{η≤x} taking positive values in the interval [0, xmax] 
of the values of its argument. Paper [2] described the algo-
rithm of construction of discrete function of probability den-
sity η based on retrospective information about the volumes 
of orders for its products. 

For certainty, the functions of distribution of the proba-
bility of random magnitudes η were assumed to be symmet-
ric with respect to their mathematical expectation:

max

,
2

x
ηλ =  

( ) ( ) ( ) ( ),F F F Fη η η η η η η ηλ + ε − λ = λ − λ − ε  

if 

0 .η≤ ε ≤ λ   (3)

The symmetry condition is met by a wide class of prob-
ability distribution laws, including normal, uniform, “trian-
gular”. The use of the properties of symmetric laws makes 
it possible to simplify the form of mathematical formulas, 
their research, and numerical calculations in accordance 
with them.

We introduced designations mT +  and T+, which describe, 
respectively, the set and the number of these planning peri-
ods t, in which ηt≥λη. Similarly, mT −  and T– are the set and the 
number of operation periods t, in which ηt≤λη For the number 
of periods T–, T+ in the total number  of planning periods are, 
respectively, made up of magnitudes ,TP T

−− =  .TP T
++ =  

If the function of distribution of probabilities of magni-
tude η is a symmetric function, P–=P{η≤λη}=P+=P{λη≤η}=0,5. 
In this case, magnitudes P–, P+ have the sense of probabili-
ties that for an arbitrary planning period t, it will turn out 
that either ,mt T −∈  or .mt T +∈   

The task of studying the properties of the processes of 
receipt and execution of orders with random volumes caused 
the need to use the following two magnitudes:

1
,

m

t
t T

x
T −

−
−

∈

ρ = ∑  
1

,
m

t
t T

x
T +

+
+

∈

ρ = ∑  (4)

where ρ–
 is the mean value of T– implementations ,t mx t T −∈  of 

random magnitude η, ρ+ is the mean value of T+ implementa-
tions ,t mx t T +∈  of random magnitude η. At the infinitely high 
value of the number T of planned periods, magnitudes ρ–, ρ+ 
have the sense of mathematical expectation of random magni-
tude η on condition that it gets, respectively, in intervals [0, 
λη], [λη, xmax]. It is not difficult to see that ρ–+ρ+=2λη. Besides, 
in [2] it was shown that at a decrease in the variance of mag-
nitude η to zero, magnitudes λη–ρ–, ρ+λη also decrease to zero. 
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4. 3. Evaluation of the effectiveness of the policies of 
orders fulfillment and production with constant intensity

Paper [13] analyzes the policies for the execution of or-
ders and production with constant intensity in accordance 
with the considered model of operative planning. Here are 
the results of the evaluation of the effectiveness of these 
policies for the possibility of their subsequent comparison 
with the evaluation of the effectiveness of the policy with 
reservation of finished products.

Magnitude ζ of the sum of effects Et within periods t=1, 
2, …, T, attributed to the maximum expected effect dληT for 
these periods was used as the indicator of the effectiveness 
of operation activity of an enterprise in T planning periods: 

 

( )
1

1
.

T
t

t

E
T

T d= η

ζ = ζ =
λ∑   (5)

At an infinitely large value of T, indicator ζ is trans-
formed into indicator ζ* of maximum effectiveness of oper-
ation activity: 

 
( )* lim .

T
T

→∞
ζ = ζ  (6)

In accordance with the policy of fulfilling incoming or-
ders, production volume ut for the current operation period t 
is selected as equal to volume xt of incoming orders. Assum-
ing that there are no residues z0 of the finished product at 
the beginning of planning, we have yt=xt, zt=0, Et=dxt–qt in 
each period t=1, 2, …, T.

The ζPFO indicator of operation activity in T planning 
periods for the policy of fulfillment of incoming orders can 
be represented in the following form: ζPFO=1–S1–S2, where 

( )

( )

1

;

m

m

t
t T

t
t T

S x
d T

cP cP
x T

d T

c

d

+

+

η
η ∈

+ +
+ +

η η+
η η∈

= − λ =
λ

 
= − λ = ρ − λ λ λ 

∑

∑   (7)
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( )

2

.

m

m

t
t T

t
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S x
d T

bP bP
T x

d T d

b

−

−

η
η ∈

− −
− −

η η−
η η∈

= λ − =
λ

 
= λ − = λ − ρ λ λ 

∑

∑   (8)

Thus, we obtained: 

( ) ( )( )PFO

1
1 .cP bP

d
+ + − −

η η
η

ζ = − ρ − λ + λ − ρ
λ

 (9)

Since the function of distribution of the probability 
of magnitude η is supposed to be symmetric, P–=P+=0.5, 
ρ–+ρ+=2λη, ρ+=2ληρ–. Then

( ) ( )( )

( )

PFO

1
1

2

1 .
2

c b
d

b c
d

− −
η η

η

−
η

η

ζ = − λ − ρ + λ − ρ =
λ

λ − ρ
= − +

λ
 (10)

From (10) it can be seen that at an increase in indica-
tors b, c of specific costs from 0 to d, the *

PFOζ  indicator of 

maximum effectiveness decreases from 1 to .
−

η

ρ
λ

In the case of applying the constant-intensity production 
policy, the volume of production ut for the operation period t 
is determined from the formula: ut=min{xt, u0}. That is why 
yt=ut, zt=0,

( )
( )

if

if

,

.

, ,

, ,

t t m

t

t t t m

d d x x t T
E

dx b x x t T

+
η η η

−
η η

 λ − − λ λ ≤ ∈= 
− λ − λ ≥ ∈

 (11)

Based on this, the *
PCIζ  indicator of maximum effective-

ness of operation activity for the policy with constant inten-
sity production was expressed through the formula:

( )*
PCI 1 .

b
P P

d

−+
ηη+

ηη

−

λ
λ − ρρ − λ

ζ = − −
λ

  (12)

Considering that P–=P+=0.5, ρ+ =2ληρ–, we obtained: 

( ) ( )*
PCI 1 .

2
b d

d

−
η

η

λ − ρ
ζ = − +

λ
  (13)

Since d>c, in the case of the policy of constant intensity 
production, the value of the ζPCI indicator of effectiveness ζ is 
lower than its value ζPFO at the policy of execution of incom-
ing orders. This is caused by the losses due to lost profit that 
accompany the constant intensity of production. 

4. 4. Methods of research 
The features of this study are determined by the meth-

ods used to conduct it. The general approach to the study 
of controlled random processes is based on the method for 
assessing the effectiveness of decision-making policies using 
the indicator of maximum efficiency ζ*, determined from the 
formula (6). This indicator expresses the ratio of mathemat-
ical expectation of the operation effect to the maximum pos-
sible effect in the planning period. Effectiveness indicators 
for a limited number of periods, used in many cited works, 
reflect the peculiarities of the realization of demand in these 
periods. In comparison with them, the indicator of maximum 
effectiveness has an undoubted advantage, since it deter-
mines the estimate of effectiveness objectively, regardless of 
the selected periods. In addition, the effectiveness evaluation 
based on the ζ* indicator does not depend on the value of 
mathematical expectation of demand. That is why the ζ* 
indicator makes it possible to assess the quality of planned 
solutions regardless of the intensity of demand. Due to losses 
arising during the planning periods due to the deviation of 
the volume of orders from the value of their mathematical 
expectation λη the value of the ζ* indicator does not exceed 1.

Since the random process determined by the policy with 
the reservation of finished products does not have the Markov 
property, its research required the development of special 
research methods. During the operational activity of an 
enterprise with the reservation of products, there emerge res-
ervation chains, consisting of successive periods of operative 
planning, at which a reserve of products is created and main-
tained due to an insufficient volume of incoming orders. The 
study of the corresponding random activity process is based 
on the method of limiting the duration of the “deposition” of 
the product reserve and on the balancing method to deter-
mine the expected intensities of the occurrence of chains.

In accordance with the method for limiting the product 
“deposition” duration, its initial reserve should be selected 
so that the reservation chain should be completed in a given 
number of periods with a probability close to unity. At the 
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same time, the larger the number of periods allowed for 
reservation, the greater the maximum magnitude of the safe 
reserve. The method of limiting the “deposition” duration 
makes it possible to detail the reservation policy depending 
on the estimated maximum number of reservation periods. 
The application of the balancing method is caused by the 
need to determine the expected economic effect on the 
aggregates of the chains of reservation of separate product 
kinds and, as a result, to assess the effectiveness of the reser-
vation policy in general.

5. Results of studying the policy of operation activity 
with product reservation 

5. 1. Analysis of the process of operation activity with 
product reservation

In accordance with the policy of reservation of finished 
products for some planning periods t=k+1 with expected 
downtime { }1 ,mk T −+ ∈  the production volume is set at a rate 
of uk+1, which may exceed volume xk+1 of incoming orders:

{ }1 1min , ,k ku x+ + η= + δ λ  (14)

where δ is the maximum magnitude of the reserve of fin-
ished products specified by the production policy with 
reservation. The choice of production volumes in accordance 
with (14) makes it possible to exclude the possibility of losses 
associated with the overload of production capacities during 
the k+1 period.

Thus, by the beginning of the transition to the beginning 
of planning period k+2, the reserve of finished products is 
created in the volume zk+1=uk+1xk+1≥0. If in the period k+2, it 
turns out that xk+2zk+1≥0, the production volume in this peri-
od is established in volume uk+2=xk+2zk+1. If xk+2zk+1<0, it is 
accepted that uk+2=0 and the process of “zeroing” of produc-
tion volumes will continue in the following intervals mt T −∈  the 
period k+r that 

 
1

1
1 1

.
k r k r

t k t
t k t k

x z x
+ − +

+
= + = +

< ≤∑ ∑  (15)

In the research it is proposed to interpret the sequence 
k+1, k+2, …, k+r of the planning periods as a complete reser-
vation chain and sequence k+1, k+2, …, k+p, p<r as an in-
complete chain. The number of r periods covered by the 
complete reservation chain is proposed to be called the chain 
length. The sequence k+1, k+2, …, k+r will be a complete 
reservation chain of the first type if { } ,mk r T −+ ∈  and a com-
plete reservation chain of the second type if { } .mk r T ++ ∈  For 
the convenience of presentation, planning periods ,mt T +∈  not 
included in reservation chains are called 0 type chains.

Indicators of operation activity in the periods of the res-
ervation chain with length r take the following values:

( )0 2,3,..., 1 ,k pu p r+ = = −  

1

1
2

;
k r

k r k r k t
t k

u x z x
+ −

+ + +
= +

 
= − −  ∑   (16)

( )1
2

2,3,..., 1 ,
k p

k p k t
t k

z z x p r
+

+ +
= +

= − = −∑  0;k rz + =   (17)

( )1,2,..., ;k p k pa az p r+ += =   (18)

( )1 1 ,k kb b u+ η += λ −  ( )2,..., 1 ,k pb b p r+ η= λ = −  

{ }max ,0 ;k r k rb b u+ η += λ −  (19)

( )0 1,2,..., 1 ,k pc p r+ = = −  { }max ,0 ,k r k rc c u+ + η= − λ   (20)

where at, bt, ct are the losses associated, respectively, with 
the storage of the product stock, downtime, and over norma-
tive load of capacities in the t-th planning period. 

As a result of comparing losses on two-period chains un-
der the reservation policy, on the one hand, and in the same 
two periods for the policy of order fulfillment, on the other 
hand, the following conclusions were made. In the type-1 
chain periods, the magnitudes of downtime losses for both 
policies are the same. When using the policy with reserva-
tion on type-2 chains, both losses from downtime on k+1 
periods and losses from an excess load of capacities on k+2 
periods are reduced. However, the application of the policy 
with reservation results in losses associated with the lack of 
sales of finished products in the amount of zk+1. At the same 
time, losses due to the reservation of finished products in-
crease with an increase in the lengths of reservation chains.

5. 2. Finding the maximum safe value of the product 
stock

To assess the effectiveness of the policy of production with 
reservation, the choice of magnitude δ of reserve of finished 
products should provide an opportunity to foresee the maxi-
mum length of the reservation chain. Since the laws of proba-
bility distribution η are assumed to be symmetric, at any mag-
nitude zk+1≤δ<λη, the probability that a chain of length r will be 
completed is not less than magnitude 1–(0.5)r. Theoretically, 
chains of “almost infinite” length can emerge. However, the 
probability of their occurrence will be extremely small to take 
it into consideration in practice. If you specify the minimum 
probability Q*, which should be taken into consideration, the 
maximum length r=r(Q*) of the chain, the occurrence of which 
must be considered, will be determined.

Probability Qp that under conditions of an incomplete 
reservation chain in the periods k+1, k+2, …, k+p-1, p≥2, it 
will remain incomplete in period k+p is determined from the 
following formula:

( ){ } ( )1
2

1 ,
k p

p t p
t k

Q P P p F
+

−
= +

 
= η < δ = χ − < δ = δ 

 
∑  (21)

where χ(p1) is the random magnitude of the sum of demand 

intensity ηt for p1 periods k+2, k+3, …, k+p, ( )
2

1 ,
k p

t
t k

p
+

= +

χ − = η∑   
 

( )1pF x−  is the function of distribution of random magnitude 
χ(p–1), F1(x)=Fη(x).

However, so that a reservation chain starting in the k+1 
period could finish in the k+p, p≥3 periods, it must not end 
in earlier periods. The probability of having an incomplete 
reservation chain in the periods k+1, k+2, …, k+p–1, and its 
continuation after the period k+p, is determined by magni-
tude Up–1Qp, where Up–1 is the probability of occurrence of an 
incomplete reservation chain in periods k+1, k+2, …, k+p–1,

{ }
( ) ( ) ( )

1 1 2 3 1

1 2 2

* * *...*

0.5* * *...* .

p k p

p

U P Q Q Q

F F F

− + η −

−

= η ≤ λ =

= δ δ δ  (22)

The reservation chain that ends in the k+p period is a 
1-type chain with a probability
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( )

1

1 1
1

1 1 1

1
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t k
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p p

R U P x

U F F

U Q

+ −

− + η
= +

− − η −

−

 
= δ − ≤ η ≤ λ = 

 

= λ − δ =

= −

∑

 (23)

The reservation chain that ends in the k+p period is a 
2-type chain with a probability

{ }2 1 1* 0.5 .p p k p pR U P U− + η −= η > λ =   (24)

If an enterprise expects that the chain length will not 
exceed r periods, magnitude δ should meet the requirement: 

*
1,r −δ ≤ δ  where *

1r −δ  is the maximum safe magnitude of the 
stock of the product created in period k+1 from the calcula-
tion of its complete sale in k+r. According to formulas (22), 
(24), magnitude *

1r −δ  is found as a solution to the equation:

( ) ( ) ( ) ( ) *
1 2 2 10.5* * *...* * ,r rF F F F Q− −δ δ δ δ =  (25)

where Q* is the boundary probability that in the r-th period 
of the reservation chain, the stock of product will not be sold 
completely. Obviously, boundary probability Q* must be a 
negligibly small magnitude. If the magnitude *

1r −δ  is estab-
lished, magnitudes ( )* *

1 1p p rQ F − −= δ  determine the probability 
that the reservation chain that consists of p periods, 
p=2, 3,…, r, will continue in (p+1)-th period.

Since the policy of operation activity with reservation 
involves the choice of the maximum length of the reservation 
chain, for clarification in the paper, it is proposed to use the 
term “policy with r-period reservation”, during which there 
can emerge reservation chains covering p planning periods, 
p=1, 2,..., r.

Following (25) the maximum safe magnitude *
1δ  of the 

product stock for two-period reservation is determined from 
conditions: 0,5F1(δ)=0,5Fη(δ)=Q*. Hence, it follows that   

( )* *
1 2 ,F Q−

ηδ =   (26)

where ( )...F −
η is the function that is inverse to function Fη(…). 

A reservation chain will be the 1-type chain with probability 
( )( ) ( )* *

10.5 0.5 0.5 0.5 2 0.25F Qη− δ = − ≈  and the 2-type chain 
with probability 0.5*0.5=0.25. 

The maximum safe magnitude *
2δ  of product stock for 

three-period reservation is determined from the condition: 
( ) ( ) *

1 20.5 * .F F Qδ δ =  Assume that Pip is the probabilities of 
emerging in arbitrary period t of operational activities of the 
i-th type reservation chains, i=1, 2, with lengths p=2, 3, and 
Pp is the probabilities of emerging of reservation chains of 
both types with lengths p=2, 3 Then, in accordance with 
(22) to (24):

 
( )*

12 20.5 0.5 ;P Q= −  22 0.25;P =  

( )*
2 12 22 20.5 1 ;P P P Q= + = −  (27)

( )* * *
13 2 3 20.5 0.5 0.25 ;P Q Q Q= − ≈  *

23 20.25 ;P Q=  

*
3 13 23 20.5 ,P P P Q= + =   (28)

where ( )* *
2 2 ,Q Fη= δ  ( )* *

3 2 2 ,Q F= δ  * * *
2 30.5 0.Q Q Q= ≈  

As you can see, P2+P3=0.5. Therefore, on condition that 
,mt T −∈  the sum of probabilities of emerging of all 1-type and 

2-type chains in this period makes up unity: 2(P2+P3) =1. 

The policy with product reservation, unlike other pol-
icies, involves the use of not only information about the 
volume of incoming orders, but also the forecasts of demand, 
which are reflected in the functions Fp(x), p=1, 2,…. The in-
formation basis for finding these functions is the probability 
density of magnitude η of demand intensity, which can be 
determined from retrospective information on the volume of 
incoming orders.

Obviously, the problem of finding functions Fp(x), 
p=1, 2,… boils down to finding the density of probability of 

random magnitude ( )
1

p

t
t

p
=

χ = η∑  by the assigned density of  
 
magnitude probability η of demand intensity. The idea of the 
algorithm of calculation of the probability of the sum of some 
discrete magnitudes, assigned by their probability densities, 
is the following. Each summand ηt of magnitude χ(p) is con-
sidered as source t of receiving orders with volumes rth  and 
probabilities prt, r=1, 2,…, R, where R is the number of values 
that can be taken by discrete random magnitude η of demand 
intensity. Pair ( ),rtt rts h p=  determines the state of the t-th 
source, and vector s=(st, t=1, 2,…, p) is the state of all p 
sources. The totality of all vectors s is matched by the set of 
mutually inclusive events within the time interval, covering 
p periods. In this case, the vector of state s uniquely deter-
mines the total volume of orders for time interval p and its 
probability, which are correlated with the value of χ(p) and 
its probability.

The adequacy of forecasting can be increased by clarify-
ing the probability density η in each current planning period 
by using not only statistical but also expert estimates that 
take into consideration the specific features of formation of 
demand in the near future.

5. 3. Examples of numerical calculations of maximum 
safe values of product stock

To test the proposed approach, the paper considered nu-
merical examples of finding values of *

1.δ The assumption 
that random variable η has a normal distribution with as-
signed mathematical expectation λη and variance 2 .ησ  was 
used. For calculations, we used table values of function 
Φ0(t)=Φ(t)–0.5, where Φ(t) is the function of normalized 

and centered normal variance ( )
2

2
1

d .
2

t u

t e u
−

−∞

Φ =
π ∫

The relevant tabular data are given in reference books. 
With these data, the value of function F(x) of any normal vari-
ance with mathematical expectation λ and variance σ2 is found 

for x≤λ in the following way: ( ) 00.5 .
x

F x t
λ − = − Φ =  σ

To find the values of the argument of function F(x), at 
which it takes the assigned value Q≤0.5, the following for-
mula was used:

( )1
0 0.5 ,x Q−= λ − σΦ −  (29)

where ( )1
0 ...−Φ  is the function that is inverse to function 

Φ0(t). Indeed, magnitude ( )1
0 0.5yt Q−= Φ −  matches such 

magnitude y=λ+σty, that F(y)=0.5+Φ0(ty)=1–Q. From the 
symmetry property of function F(x) it follows that:  

( ) ( ) ( ) ( )0.5 ,F y z F Q F F z= λ + − λ = − = λ − λ −   (30)

where z=y–λ=σty. That is F(λ–z)=Q, x=λz=λ–σty.
We can suppose with high accuracy that function Φ(t) 

takes positive values only in the interval [tmin, tmax], where 
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tmin=5, tmax=5. That is why it is possible to consider that arbi-
trary function F(x) of normal variance takes positive values in 
the interval [xmin, xmax], где xmin=λ+σtmin, xmax=λ+σtmax.

For considered functions Fη(x), for which xmin=0, it is true 
that max 5 ,tη η ηλ = σ = σ  max max2 10 .x tη η= σ = σ  From (29) it 
follows that 

( ) ( )* * max * *
1 5 ,t t t tη η η ηδ = λ − σ = σ − = σ −  

where ( )* 1
0 0.5 ,t Q−= Φ −  and according to formula (26) 

Q=2Q*. Thus, the value *
1δ  is completely determined by 

magnitudes ση, Q*. As it can be seen, at a decrease in root 
mean square deviation ση to 0, magnitude *

1δ  decreases to 0. 
At a decrease of boundary probability Q* to 0, magnitude t* 
increases up to tmax=5, and value *

1δ  decreases to 0. Magni-
tude υ of relative maximum product reserve depends only on 
boundary probability Q*:  

* *
*1

max1 1 0.2 .
t

t
tη

δ
υ = = − = −

λ
  (31)

Table 1 gives absolute *
1δ  and relative υ values of maxi-

mum product stock for two-period reservation depending on 
the values of boundary probability Q* and root mean square 
deviation ση. 

Table	1		

Values	of	product	stock	for	a	two-period	reservation	chain	
and	the	normal	law	of	distribution	η

Q=2Q* t* ση λη
*
1δ υ

0.005 2.58 1 5 2.42 0.484

0.01 2.33 1 5 2.67 0.534

0.05 1.65 1 5 3.35 0.670

0.005 2.58 2 10 4.84 0.484

0.01 2.33 2 10 5.34 0.534

0.05 1.65 2 10 6.70 0.670

0.005 2.58 5 25 12.10 0.484

0.01 2.33 5 25 13.35 0.534

0.05 1.65 5 25 16.75 0.670

Above Table 1 shows that the creation of product stock *
1δ  

demands an additional load of production capacity in the 
volume that is close to half its normative magnitude u0=λη. 
With high probability, production volumes *

1 1 1k ku x+ += + δ  
will be close to the normative capacity magnitude or even 
exceed it. That is why under the normal law of distribution η 
there is no need to increase *

1.δ
 
5. 4. Estimation of intensities of occurrence of chains 

of periods
Assume that N is the number of planning periods in which 

the process of operation activity is considered. Since any chain 
of periods is uniquely determined by its initial period k+1 at the 
end of period T it is possible to determine sets m

ipU  of the chains 
of the similar type i, i=0, 1, 2, and of the same length p (p=1 for 
all 0-type chains, p=2, 3,…, r for 1-type and 2-type chains). 
These sets uniquely determine the number of Kip chains of dif-
ferent types and different durations, as well as of intensity 

1
ip ipk K

T
= of the occurrence of chains, which are the numbers of  

chains of various types that fall on one planning period.

Thus, in the process of operation activity with product res-
ervation, chains of periods of a certain type and duration are 
formed. In this regard, the process of operational activity can be 
considered as the process of forming a complex of various 
chains. Information about the course of this process during T 
periods contain sets .m

ipU The current state of the process at the 
end of current period T will display a vector composed of the 
magnitudes of intensities kip of occurrence of chains.

Imagine an experiment in which, in time interval with 
the duration of T periods, values xt, t=1, 2,…, T, correspond-
ing to distribution law η were generated, and decisions on 
production volumes were made in accordance with the reser-
vation policy. Suppose that experiment duration T is long 
enough for statistical characteristics of random variable η to 
be manifested, in particular, condition T–≈T+≈0.5T to be 
met. Then, in the case of a repeated experiment with the 
same duration T, it will turn out that the composition of sets 

m
ipU  will change noticeably, however, there will be insignifi-

cant changes in quantities of Kip of various chains and inten-
sities kip of their occurrence.

It is proposed to call the values of intensities kip at T→∞ 
the maximum values of intensities of chains’ occurrence (i, p). 
They represent the mathematical expectation of mean values of 
the number of chains in the time interval covering T planning 
periods. It is clear that during initial periods of operation ac-
tivity, intensities kip vary significantly. At an increase in T, the 
deviations of current intensities from the limit values decrease, 
and at large values of T, the state of the chain formation process 
gets stabilized in accordance with the limit values of intensities.

To assess the effectiveness of reservation policies, it be-
comes necessary to assess the limit intensities of the emer-
gence of chains of various types and to statistically assess the 
economic effect obtained on the totality of chains of each 
type. To find the maximum intensities, the research used the 
balancing method, which assumes matching the total num-
ber of periods mt T −∈  with the number of periods ,mt T +∈ re-
quired for the formation of various chains.

The application of this method for the two-period reserva-
tion was considered. Since for the final period t of the two-peri-
od chain, the probabilities that mt T −∈  and mt T +∈  are the same 
is 0.5, the number K12 of 1-type reservation chains is the same 
as the number K22 of 2-type reservation chains. In this case, 
K12+K22=G, where G is the number of all initial periods mt T −∈  
in reservation chains. That is why the total number of periods 

mt T −∈  in reservation chains is magnitude K12+G=1.5G and this 
magnitude must coincide with half the number of periods T. 
Therefore, 1.5G=0.5T, G=T/3, K12=K22=T/6. The number of 
0-type chains (periods ,mt T +∈  not included in reservation 

chains), is determined by magnitude 01

1 1
.

2 6 3
T

T
K

 = − =  
 Then  

 
limit intensities of occurrence of chains are magnitudes: 
k01=1/3, k12=k22=1/6. If, for example, we assume that planning 
interval T includes 12 periods, this interval will contain 2 
two-period 1-type chains, 2 two-period 2-type chains, and 4 
single-period chains with periods .mt T +∈

5. 5. Assessment of operation activity with product 
reservation  

To solve the problem of assessing the effectiveness of 
operation activity with product reservation, the following 
designations were introduced: Hi is the average effect on the 
i-th type chain i=0, 1, 2 in T planning periods; Ei is the math-
ematic expectation of effect on the i-th type chain, i=0, 1, 2. 
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It is proposed to calculate indicator ζPPR of the effective-
ness of operation activity in T planning periods in the form 
of three constituent parts:

PPR 0 1 2,S S Sζ = + +   (32)

where S0 is the constituent of effectiveness indicator, formed by 
planning periods ,mt T +∈  not included in reservation chains; S1 
is the constituent of effectiveness indicator formed by 1-type 
reservation chains; S2 is the constituent of effectiveness indica-
tor formed by 2-type reservation chains. In this case   

01
0 0,

k
S E

d η

=
λ

 12
1 1,

k
S E

d η

=
λ

 22
2 2.

k
S E

d η

=
λ

 (33)

Then magnitudes Hi, Ei (i=0, 1, 2) were found. To simpli-
fy the calculations, it was accepted that reserve magnitude 
δ, chosen by an enterprise, does not exceed.

λη–ρ–: { }*
1min , ,−

ηδ = δ λ − ρ  where ρ– is the mathematic 
expectation of random magnitude η provided it falls in the 
interval [0, λη].

The effect on the 0-type chain that is average for N plan-
ning periods is determined by the magnitude

( )( )

( )
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01

01

0
01
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t t
t U

t
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H dx c x
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d c x c U
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d c I c
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∈

η
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η

= − − λ =

 
= − + λ = 

 

= − + λ

∑

∑
 (34)

where 
0101

1
m

t
t U

I x
K ∈

= ∑  is the mean value U0 of implementa-

tions t mx T +∈  of random magnitude η. 
At an infinitely large value T, magnitude I meets math-

ematical expectation ρ+ of random magnitude η provided it 
falls in the interval [λη, xmax]. Then 

( )0 ,E d c c+
η= − ρ + λ  

( )( )01
0 0

1
.

3
k

S E d c c
d d

+
η

η η

= = − ρ + λ
λ λ

  (35)

It was accepted to designate the volumes of orders in 
each reservation chain t as 1,t

kx +  2
t
kx + . Since the effect on the 

1-type reservation chain is determined by the magnitude  

( ) ( )( )1 1 2 1 22 ,t t t t
t k k k kH d x x b x x a+ + η + += + − λ − + − δ   (36)

 
the average effect on the 1-type chain is expressed as follows:
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where I1 is the mean value of K12 implementations 1,t
kx +  

{ }1 ,mk T −+ ∈  of magnitude η,
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I2 is the mean value of K12 implementations 2,t
kx +  

{ }2 ,mk T −+ ∈  of magnitude η,
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k U

I x
K +

∈

= ∑   (39)
 

At an infinitely large value of T, it turns out that I1=I2=ρ–. 
Therefore

( ) *
1 12 2 ,E d b b a−

η= + ρ − λ − δ   (40)

( )( )*12
1 1 1

1
0.5 .

3
k

S E d a b
d d

− −
η

η η

= = ρ − δ − λ − ρ
λ λ

 (41)

Given that ρ–+ρ+=2λη, ρ+=2λη–ρ–, it was obtained:
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The effect on the type-2 reservation chain t is expressed 
by the following magnitude:
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where I3 is the mean value of K22 implementations 1,t
kx +  

{ }1 ,mk T ++ ∈  of magnitude η,
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I4 is the mean value of K22 implementations 2,t
kx +  

{ }2 ,mk T ++ ∈  of magnitude η,
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At an infinitely large value T, magnitudes I3, I4 meet 
mathematic expectations ρ–, ρ+ of the values of random 
magnitude η respectively in intervals [0, λη], [λη, xmax]. 
Therefore
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− −
η

+ +
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Since ρ–+ρ+=2λη, ρ+=2λη–ρ–, 
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 λ − λ − ρ −
 =

λ  − λ − ρ + δ + − 
  (48)
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As a result, an indicator *
PPRζ  of limit effectiveness of 

operation activity for the policy with reserves of finished 
products was expressed by the following formulas:

( )
( ) ( )

( ) ( )

*
PPR *

1

*
1

6 31
6 3 2

1
1 2 .

2 6

d c

d b b c a

b c b c a
d d

−
η η

−
η η

−
η

η η

 λ − λ − ρ −
 ζ = =

λ  − λ − ρ + δ + − 

λ − ρ
= − + + δ + −

λ λ
  (49)

From the comparison of the value of the indicator 

( )*
PFO 1 ,

2
b c

d

−
η

η

λ − ρ
ζ = − +

λ
 (50)

of limit effectiveness for the policy of fulfillment of incoming 
orders with the obtained value *

PPRζ  of this indicator for the 
policy with product reservation, the following conclusions 
were made. The values of the constituent parts correspond-
ing to the profit from the sale of products are the same, equal 
to 1. The magnitudes of losses caused by downtime and over 
normative capacity load under the policy with reservation of 
finished products are less than under the policy of fulfilling 
incoming orders, by a magnitude

( )
*
1 .

6
e b c

d
+

η

δ
= +

λ
  (51)

However, when using the reservation policy, there occur 
additional losses due to the lack of sale of part of the finished 
product. A reservation policy will be more beneficial to an 
enterprise if a<0.5(b+c). When this condition is met, magni-
tude e+ of a loss reduction increases in proportion to the 
magnitude *

1δ  of the maximum allowable reserve of finished 
products ( )* *

1 .F Q−
ηδ =  In turn, magnitude *

1δ  increases at an 
increase in dispersion of the law of distribution Fη of magni-
tude η of the volume of orders and an increase in probability 
Q* of occurrence of the chains with the length of more than 
two periods.   

The effectiveness of the finished product reservation 
policy can be improved by forecasting the volume of orders 
in periods k+2 of reservation chains. This requires finding 
distribution function F*(ηk+2), reflecting the peculiarities of 
the formation of demand for this period, before the begin-
ning of each period k+2.

6. Discussion of results of studying the policy of 
operation activity with product reservation

The policy of operation activity of an enterprise with 
the creation of reserves of finished products is considered 
as a model of decision-making in a controlled random pro-
cess. Policy effectiveness is estimated by the limit average 
economic effect per unit of time over an infinite number of 
periods.

Representation of operation activity in the form of a 
controlled random process is different from the approach 
to operation activity based on the method of stochastic 
programming. This method is aimed at finding optimal 
values of production intensity in one or more adjacent 
planning periods. At the same time, the used concept makes 
it possible to assess the effectiveness of decision-making 

policies in general, regardless of the specific situation in the 
periods under consideration. At the same time, the choice 
of decisions based on a certain policy is in practice more 
convenient.

The policy of product reservation is different from the 
policy of fulfilling incoming orders and the production 
policy with constant intensity. When it is applied, the 
value of Et in planning period t depends not only on the 
random volume of orders in this period but also on the 
product reserves created in previous periods. That is why 
the random process Et, t=1, 2,…, T, corresponding to the 
reservation policy, does not meet the Markov property. 
For this reason, there is a need to consider reservation 
chains, to search for intensities of their appearance and 
represent the non-Markov process Et, t=1, 2,…, T, in the 
form of the sum of Markov processes of effects on reserva-
tion chains of separate types.

It was shown that during the operational activity of an 
enterprise with product reservation, there can occur reser-
vation chains consisting of successive periods of operative 
planning, in which a product reserve is created and main-
tained due to an insufficient volume of incoming orders. As 
a result of analysis of the process of operation activity with 
product reservation, we obtained formulas (21) to (24), 
expressing the probabilities of occurrence of various reser-
vation chains in accordance with the law of distribution of 
demand probability.

The proposed method for selecting the magnitude of the 
initial stock of products on the reservation chain is that the 
boundary probability of continuation of this chain was an 
assigned magnitude close to zero. This condition is reflect-
ed in formula (25). It implicitly determines the maximum 
value of the product stock, at which the duration of the 
reservation chain is guaranteed not to exceed the specified 
number of periods. In the case of a two-period reservation, 
such a maximum safe magnitude of the reserve is found 
from formula (26) as the value of the function inverse of the 
original function of the demand probability distribution. 
Finding the maximum magnitude of a safe reserve for more 
than two reservation periods requires information on the 
laws of distribution of the probability of the sum of sever-
al random magnitudes of demand. That is why a general 
scheme of the algorithm for calculating the density of prob-
ability of the sum of several random magnitudes assigned 
by their probability densities was presented.

For two-period reservation, in the case of normal dis-
tribution of demand probability, numerical calculations 
of the maximum safe magnitude of product stock were 
performed. We considered the functions of the normal 
distribution with probability densities taking “practically” 
non-zero values only in the interval [0, 2λη], where λη is the 
mathematical expectation of the demand magnitude. It was 
shown that in this case, root mean square deviation ση is 
related to λη by a directly proportional relationship.

For the convenience of analyzing the results, we intro-
duced the magnitude of the relative maximum stock of 
products, which is the ratio of the maximum (absolute) 
stock of products to mathematical expectation of the de-
mand magnitude, which by definition coincides with the 
normative capacity of an enterprise. Table 1 shows absolute 

*
1δ  and relative υ values of the maximum product stock, de-

pending on the values of boundary probability Q* and root 
mean square deviation ση. Table 1 shows that magnitude υ 
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increases at an increase in ση and at values from 1 to 5, 
magnitude υ accepts values close to 0.5. Thus, it was shown 
that up to half its standard production capacity can be used 
to create a safe stock of products *

1δ , and this will allow 
providing an enterprise with an acceptable uniformity of 
production.

To assess the effectiveness of reservation policy, it 
becomes necessary to find the expected intensities of the 
emergence of chains of various kinds. To solve this prob-
lem, we proposed the balancing method, which assumes 
the coincidence of the total number of periods with the 
number of periods required to form the chains with differ-
ent probabilities of their occurrence. Subsection 5.4 shows 
the formulas that determine the intensities of occurrence 
of chains of various kinds in the case of two-period res-
ervation.

An estimate of the effectiveness of the two-period 
reservation policy, which is pursued in the case of the 
normal law of distribution of the demand magnitude, was 
obtained. The expression of this estimate depending on 
the values of cost indicators in the model of operative 
planning is described by formula (49). Its comparison 
with formula (50), which determines the estimate of the 
effectiveness of the policy of execution of incoming orders, 
makes it possible to assert that the policy with reservation 
is more profitable if a<0.5(b+c), where a, b, c are the mag-
nitudes of losses per unit of production, due, respectively, 
to the storage of the stock of finished products, downtime, 
and excess capacity load. The above condition quite clear-
ly determines the scope of the possible application of the 
reservation policy.

Subsequent research should be focused on assessing 
the effectiveness of operation activity with reservation 
for the laws of demand magnitude distribution that differ 
from normal.

7. Conclusions

1. The policy with the reservation of finished products 
makes it possible to meet increased demand by creating 
stocks of finished products produced during periods of 

reduced demand. During the operational activity of an 
enterprise, there can emerge reservation chains, consist-
ing of successive periods of operative planning, in which 
a reserve of products is created and maintained due to 
an insufficient volume of incoming orders. Formulas that 
make it possible to find the probabilities of occurrence 
of reserve chains that correspond to the laws of demand 
probability distribution were obtained.

2. In order to limit the negative effect of “depositing” 
of finished products, it was proposed to limit the number 
of periods covered by reservation chains. That is why 
the proposed method for selecting the initial stock on a 
reservation chain implies that the boundary probability 
of the continuation of this chain is an assigned magnitude 
close to zero. Formulas that make it possible to find the 
maximum safe size of the product stock from the condition 
of its full sale during a given number of planning periods 
were obtained.

3. It was shown that in the case when the law of de-
mand magnitude distribution is normal, sufficiently large 
values of the safe reserve correspond to the two-period 
reservation, ensuring acceptable uniformity of produc-
tion.

4. To find the expected intensities of the emergence 
of chains of various types, the balancing method was 
proposed. It is assumed that the total number of periods 
coincides with the number of periods required to form 
chains with different probabilities of their occurrence. 
Formulas determining the intensities of occurrence of 
chains of various types in the case of two-period reserva-
tion were obtained.

5. The effectiveness of operation activity with the res-
ervation of finished products was evaluated. The formula 
expressing the value of the indicator of limit effectiveness 
depending on the values of cost indicators in the model of 
operative planning was obtained. A comparative analysis 
of the effectiveness of the reservation policy with the pol-
icies for the execution of incoming orders and production 
with constant intensity was performed. The correlation 
of values of cost indicators, at which the policy with a 
reservation has higher effectiveness than other considered 
variants of policies of operation activity, was determined.
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