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Abstract  

In this paper, we propose two approaches to analyze the dynamic properties of a system of two 
differential equations with quadratic nonlinearity. It was demonstrated that both the method known from 
the literature and the method proposed by the authors of this paper give the same result; namely, in such 
nonlinear dynamic systems there are two foci and six limit cycles in the 3:3 arrangement. 
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1. Introduction 
 

One of the directions in the development of the theory of dynamical systems is the study of limit 
cycles. The second part of Hilbert's 16th problem is connected precisely with the determination of the 
possible number of limit cycles of polynomial vector fields and their location on the plane [1]. For quadratic 
systems of two differential equations, it has been proven that the number of limit cycles around a singular 
point (called the focus) cannot be more than three, see [2], [3], [4]. In the case of a quadratic system of 
differential equations for which there are two singular points, there is a specific example with four limit 
cycles in a 3:1 arrangement, i.e. three cycles around one focus and one cycle around another focus [5]. 
There is a research program, see [6], [7], [8] aimed at solving Hilbert's sixteenth problem for quadratic 
systems. However, until now the question of finding the upper bound on the number of limit cycles of 
quadratic systems remains open. In a previous paper [9], which was posted on ResearchGate in June 2022, 
we considered a quadratic system of differential equations with two focal points. In our antecedent  study, 
the existence of 6 limit cycles in the arrangement 3:3 was proved. To verify this result, in this study we 
consider the same example of a system of two differential equations with quadratic nonlinearities that has 
two foci, but we use another method for studying it, which was proposed in [10] for the analysis of systems 
of this type. 

 

2. Main results with examples 
 

Consider a three-parameter system of two differential equations: 
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This system (1) has two singular points (points of the focus type) with coordinates * *

1 10, 0x y   

and * *

2 20, 1 3x y  .  

 
2.1. The first way of analysis 

Let us pass to new variables *

1,2,u x v y y    and study system (1) near singular points. After 

transformation we get: 
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Than we introduce additional parameters: *

1,21 6S y   and  *

2 1,2

1
(5 )

2
y     . This will allow us 

to describe the dynamic properties of system (2) in the vicinity of both singular points simultaneously. For 
the first singular point, which has coordinates (0; 0) , we obtain the values of these parameters 1S   and 

1

2
   , and for the second singular point (0;1 3)  we have 1S    and  251

2 3


 

 
  

 
 accordingly. In 

what follows, we assume that the parameters  , 1  and 2 are small sign-alternating quantities. Taking 

into account the new notation, system (2) takes the form: 
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In this case, we check whether there exist for system (3) limit cycles around singular points (focal points). 
The characteristic polynomial for the linear part of system (3) is written as:  
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k k S
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Since 2 1S  , then we get 
2 2 1 0k k   .      (4) 

  
Given that the parameter   is small, characteristic equation (4) has the following roots: 

 
2

1,2 .wh e, 1erk i i         (5) 
 

We differentiate equation (4) by the parameter  . When 0   we get: 
 

1
0

2

dk

d
  .       (6) 

 

In this case, according to Hopf's theorem [11], [12], there are periodic solutions in a neighborhood of 
singular points. 

We introduce new variables 1 1 1, ( )u x v S x y   , and as a result of which we transform system 

(3) to the form of the Poincaré normal form [13]: 
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Let's employ complex conjugate variables 1 1z x i y    and 1 1z x i y   . With the help of these 

variables, we transform the system (7), containing two differential equations, to one complex differential 
equation with respect to the variable z : 

2 2

20 11 02( )
2 2

z z
z i z g g z z g      ,     (8) 

where 



     20 1 2

1
16 ( 4 16 ) ;

2
g i S S           

 11 1

1
4 5 (1 16 )
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1
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For the differential equation (8), provided that 0  , analytical expressions for the first three 

Lyapunov quantities 1 2 3, ,l l l  are known. If 1 2 3 0l l l   , a conservative dynamical system with an infinite 

number of periodic trajectories takes place, but there are not any limit cycles. According to [14[, [15], the 
formulas for the Lyapunov quantities have the following form:  
 

1)  1 20 11

1
Im
2

l g g  ; 

2)   1 2 20 11 20 11 11 02

1
0; Im 4

12
l l g g g g g g      ;                 (9)

  

3)    
2 2 2

1 2 3 11 02 20 11 11 02

5
0; 4 Im

64
l l l g g g g g g      . 

 

Analyzing relations (9), one can see that the cyclicity of a singular point of the complex (focus type) is 
determined by the simple formula: 
 

20 11g r g  .       (10) 
 

If r is a complex number, then there is a single limit cycle, i.e.  20 11Im 0g g  . If r  is a real number and 

1r    (conservative case) and also 4r  , then there are two limit cycles with different types of stability. If 

4r  , then there are three limit cycles. Taking into account the fact that in the latter case 20 114g g  , 

from expression (9) we derive the following formula for the Lyapunov variable 3l : 
 

 2 2 3

3 11 02 11 02

25
4 Im( )

64
l g g g g   .     (11) 

 

Without loss of generality, we set 1 2 0     . Then 

20 11 028 2 ; 2 ; 2 3
2

Si
g Si g g Si         .    (12) 

  
Let us carry out intermediate calculations of the expressions that are included in the equation (11): 
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Taking into account the results obtained, we substitute the values (12) into formula (11) and obtain 
an expression for the third Lyapunov quantity: 

3

775
0

64

S
l   .       (13) 

It follows from formula (13) that at the equilibrium point  0; 0  at 1S   we obtain 3

775
0

64
l   , and at the 

point  0;1 3 at 1S    we have 3
775

0
64

l    . 



Thus, for the same values of the parameters of the nonlinear part of system (1), in the vicinity of the 

point  0; 0  at 0   and in the vicinity of the point  0;1 3  at 5 3   , there are six limit cycles in the 

arrangement 3:3. 
 
2.2. The second way of analysis 

We consider a system of two differential equations. Let's go back to the system, which is presented 

in the Poincaré normal form (7). Assume that the parameters are equal 1 0  , 2 0   and 0  . Since

 *
1,2

1
5

2
y   , respectively 

*
1,2 1,25y    . As a result, the system in this case has such form: 
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    (14) 

From the comparison of system (14) with the system which was considered in [10],  
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we can write down the values of the system parameters (the symbols) using the relations: 

20 02A a a  ;  20 02B b b  ;  11 022a b   ;   11 202b a   ;     

3 2 2 3
20 20 11 02 11 02( ) ( )b A a b A B b a AB a B       ;   2 2

02 20 02 20a b a A b B     .  (16) 

Then we have (up to a positive factor) 

(i) 1V A B   ; 

(ii)     2 15 5 , 0V A B if V          

(iii) 3 1 2( ) , 0V A B if V V      . 

Consider the behavior of the system in the first equilibrium position: 
* * *
1 1 1 10; 0; 5 0; 1x y y S      . In this case, the system (14) takes the form: 
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where 

20 11 02

20 11 02

7; 5; 3;

1; 6; 0.

a a a

b b b

   

   
 

Accordingly, we determine the values of the symbols (16): 

3 2 2 3

2 2

7 3 4; 1 0 1; 5 2 0 5; 6 2 ( 7) 20;

1 ( 4) ( 7 ( 6)) ( 4) 1 (0 5) ( 4) 1 3 1 31.

3 1 3 ( 4) 1 1 1.

A B  





                  

                  

        

 

In such a case, we have  

(i) 1 5 ( 4) ( 20) 1 0V        .   

Thus, we got that  1 0V  . Then 

(ii)     2 20 5 ( 4) ( 20) 5 5 1 5 ( 31) 0V               

Since 1 2 0V V  , then 



(iii) 
3 ( 20 ( 4) 5 1) ( 31) ( 1) 2635 0V             . 

Since 1 2 0V V   and 
3 0V  , therefore we have three limit cycles around the point  0; 0 . 

Consider the behavior of the system in the second equilibrium position: 
* * *

2 2 2 20; 1 3; 5 5 3; 1x y y S        . 

In this case, the system (14) takes the form: 

2 21
1 1 1 1 1

21
1 1 1 1

7 5 3 ,

6 ,

dx
y x x y y

dt

dy
x x x y

dt


    


   


 

where 

20 11 02

20 11 02

7; 5; 3;

1; 6; 0.

a a a

b b b

    

    
 

Accordingly, we determine the values of the symbols (16): 

3 2 2 3

2 2

7 3 4; 1 0 1; 5 2 0 5; 6 2 ( 7) 20;

1 ( 4) ( 7 6) ( 4) ( 1) (0 ( 5)) ( 4) ( 1) 3 ( 1) 31;

3 ( 1) 3 ( 4) ( 1) ( 1) 1.

A B  





                      

                     

           

 

In such a case, we have  

 (i) 1 ( 5) ( 4) ( 20) ( 1) 0V          . 

Thus, we got that  1 0V  . Then 

(ii)     2 20 5 ( 4) 20 5 5 ( 1) 5 31 0V            . 

Since 1 2 0V V  , then 

(iii) 3 ( 20 ( 4) 5 ( 1)) 31 ( 1) 2635 0V              . 

Since 1 2 0V V   and 3 0V  , therefore we have three limit cycles around the point  0;1 3 . 

3. Conclusion 

As you can see, the application of both the first and second approaches to the analysis of possible 
solutions of the quadratic system of two differential equations gave the same result. It was shown that all 
the bifurcations that were considered in this example have a local character. This is due to the fact that 
when studying them, only certain, sufficiently small neighborhoods of a singular point or a multiple limit 
cycle are considered and, accordingly, sufficiently small neighborhoods of the system parameters. The final 
solution of Gilbert's sixteenth problem requires a complete qualitative study of the system as a whole, i.e. 
we need a global theory of bifurcations. 
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