

«CHALLENGES AND THREATS TO CRITICAL INFRASTRUCTURE»

Challenges and threats to critical infrastructure. Collective monograph - NGO Institute for Cyberspace Research (Detroit, Michigan, USA), 2023. - 325 p.

The collective monograph was prepared by ukranian scholars within the framework of studies of a wide range of security issues. The authors of the monograph look at the problems of security of the state's security in a rich manner behind such basic warehouses as military security, information security, military-technical security, environmental and technogenic security

Reviewers:

Ponomarev S.P. - Doctor of Jurisprudence, head of the Department of Administration of the State Service of Special Communications and Information Protection of Ukraine

Hnatyuk S.O. - Ph.D. Chief Researcher of the State Scientific and Research Institute of Cybersecurity Technologies and Information Protection

Silvestrov A.M. - Ph.D. Prof. National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Authors

- Chapter 1. Avramenko O.V., Polishchuk V.V., Sarapin Yu.O., Voinov I.A. 1, V.A. Malik, N.V. Zhenyuk, N.I. Voropai, O.G. Korol, A.Yu. Strelnikova, Yu.V. Kostenko, O.V. Peredrii, V.V. Gordiychuk, Grinenko O.I., Hrytsyuk V.V., Zubkov V.P., Ptashkin R.L., Palagin V.V., Savostyanenko M.V., Klymenko K.V., Klymenko K.V., Tyutyunyk V., Kapelushna T.V.
- Chapter 2. Azarenko O., Honcharenko Yu., Divizinyuk M., Shevchenko R., Shevchenko O., V.M. Vashchenko, V.I. Skalozubov, I.B. Korduba, Shcherbak O., Khmyrova A., Khrystych V., Zhuk V. M., Pohosyan G. A., Yevlanov M. V., Cherepnyov I. A., Chumachenko S. M., Kolomiets D. P., Matsko P. I., Kaplia I. O., Romanyuk V. P., Medvedev M. G., Mulyava O. M., Peredrii O. V., Komisarov M. V., Proshchyn I. V., Sydorenko V.L., Eremenko S.A., Tyshchenko V.O., Vlasenko E.A., Pruskyi A.V., Demkiv A.M., Yudina D.O.
- Chapter 3. V. N. Yelisieiev, E. V. Bykova, V. S. Tyshchenko, N. V. Zaika, V. A. Popel, S. S. Chumachenko, O. V. Ivchenko, V. V. Palagin, R. Kyrychok. V., Laptev O.A., Laptev S.O., Sobchuk A.V., Ponomarenko V.V., Barabash A.O., Murasov R.K., Chumachenko S.M., Sirik A.O., Yevtushenko O.V., Sobchuk V.V., Pichkur V.V., Lapteva T.O., Kopytko S.B.
- Chapter 4. Goncharenko I.O., Kuchma T.L., Prodanyuk D.M., Zaretskyi I.S., Karpenko M.I., Moshenskyi A.O., Derman V.A., Khoperskyi S. V., Chumachenko S.M., Ponomarenko S.O., Popel V.A, Maslennikova T.A.
- Chapter 5. Vovchuk T., Shevchenko R., Shevchenko O., Guida O.G., Kiselyov V.B., Ometsynska N.V., Trysnyuk T.V., Konetska O.O., Nagornyi E. I., Marushchak V.M., Volynets T.V., Prystupa V.V., Trofimchuk O.M., Trysnyuk V.M., Shumeiko V.O., Chumachenko S.M., Lysenko O.I., O. M. Tachynina, O. V. Furtat, S. O. Furtat, I. O. Sushin.
- **Chapter 6.** Viola Vambol, Alina Kowalczyk-Juśko, Sergij Vambol, Nadeem Ahmad Khan, Aaron Dumont, Zaporozhchenko M.M., Legominova S.V., Muzhanova T.M., Ometsynska N.V., Kiselyov V. B., Huida O. G., Shchavinskyi Y.V., Palchynska V.B.
- Chapter 7. Altaf Hussain Lahori, Barbara Savytska, Parisa Ziarati, Barbara Krokhmal-Marchak, Niloofar Mozaffari, Nastaran Mozaffari, Miasoyedova A., Divizinyuk M., Shevchenko R., Myroshnychenko A., Aldoshin O.O., Kalinovsky A.Ya., Vykhvatin M.V., Havrys A.P., R.S. Yakovchuk, O.O. Pekarska, M.V. Yevlanov, R.V. Antoshchenkov, I.A. Cherepnyov, I.I. Kravchenko, V. Loik. B., Synelnikov O.D., Goncharenko M.O., Nazarenko S.Yu., Mandrychenko D.S., Shapovalov M.M., Pichugin M.A., Vynogradov S.A., Samchenko T.V., Nuyanzin O.V., Sverchkov O.V., Faure E.V., Skutskyi A.B., Lavdanskyi A.O., Grechanyk O.S., Shakhov S.M., Zinchenko O.O., Yatsenko V.O., Vambol S.O.
- Chapter 8. Adamova G.V., Anila Kausar, Ambreen Afza, Altaf Hussain Lahori, Bobkov Y.V., Derman V.A., Shevchuk A.A., Stamati V.G., Vynogradov S.A., Chumachenko S.M., Lysenko O.I., Novikov V.I., Furtat O.V., Furtat S.O., Sushin I.O., Pisnya L.A., Petrukhin S.Yu., Mishchenko I.V., Vambol S.O., Vambol Viola, Anatolii Nikitin, Yevhen Nahornyi, Ruslan Borta, Bohdan Tertiyshnyi, Smirnov S.A., Polutsyhanova V.I.
- **Chapter 9.** Yakovliev Ye.O., Rudko G.I., Yermakov V.M., Chumachenko S.M., Kodryk A.I., Dyatel O.O., Lubenska N.O.

CONTENT

CHAPTER 1 SYSTEMATIC APPROACH TO THE PROTECTION OF CRITICAL
INFRASTRUCTURE FACILITIES 9
1. Avramenko O.V., Polishchuk V.V., Sarapin Yu.O. Increasing the efficiency of
protection of ammunition storage facilities against emergency situations by
implementing justified periodic maintenance of fire protection systems10
2. Voinov I.A. 1, Malik V.A. A systematic approach to the protection of critical
infrastructure objects13
3. Zhenyuk N.V., Voropai N.I., Korol O.G., Strelnikova A.Yu. Security model of
sociocyberphysical system
4. Yu. V. Kostenko Green tariff as a tool for improving the security of critical
infrastructure facilities 18
5. Peredrii O.V., Gordiychuk V.V., Grinenko O.I., Hrytsyuk V.V., Zubkov V.P.
Integration of foreign and domestic mechanisms for ensuring cyber security of critical
infrastructure objects 21
6. Ptashkin R.L., Palagin V.V. Cross-layer web application security concept25
7. Savostyanenko M.V., Klymenko K.V. Regulatory aspects of the identification and
categorization of critical infrastructure facilities27
8. Tarnavskyi A.B. Emergency situations of tpp turbogenerators and their prevention
ways 31
9. Tyutyunyk V.V., Yashchenko O.A., Tyutyunyk O.O. Development of the support
system for anti-crisis decisions under the conditions of the implementation of the legal
regime of martial or state of emergency35
10. Faure E.V., Makhynko M.V. Approaches to construct error-correcting permutation
code for non-separable factorial data coding 40
11. Khokhlacheva Yu.E., Gavrilova A.A. Analysis of information security threats in
modern information and communication systems and networks 42
12. Yakymenko Yu.M., Rabchun D.I., Kapelyushna T.V. Use of methodologica
approaches of system analysis to ensure information security of critical infrastructure
objects46
CHAPTER 2 THEORETICAL AND METHODOLOGICAL BASIS OF ASSESSMENT
OF CYBER THREATS, TECHNOLOGICAL AND ENVIRONMENTAL THREATS
AND RISKS FOR CRITICAL INFRASTRUCTURE 52
13. Azarenko O., Honcharenko Yu., Divizinyuk M., Shevchenko R., Shevchenko O
Generalization of the characteristics of critical state infrastructure objects 53
14. V.M. Vashchenko, V.I. Skalozubov, I.B. Korduba Nuclear and ecological danger
of the Zaporizhzhya NPP in the extreme conditions of the war in Ukraine 54
15. Shcherbak O., Khmyrova A., Khrystych V., Shevchenko R. Methods of identifying
the main signs of an extraordinary situation at critical infrastructure facilities59
16. Zhuk V. M., Pohosyan G. A. Some issues of flooding risk management 60
17. Yevlanov M.V., Cherepnyov I.A., Chumachenko S.M., Kolomiets D.P. Some
aspects of increasing the shelf life and efficiency of using food concentrates in extreme
conditions 63

18. Matsko P. I., Kaplya I. O., Romanyuk V. P. Theoretical and methodological basis
for assessing man-made threats and risks to the critical infrastructure of Ukraine under
the conditions of a full-scale invasion of the Russian Federation 68
19. Medvedev M.G., Mulyava O.M. Investigation of geometric properties of
differential equations with complex coefficients 71
20. Peredrii O.V., Komisarov M.V. Procedure for assessing the efficiency of measures
for cleaning critical infrastructure objects from explosive objects during war 75
21. Proshchyn I.V. Analysis of factors which are involved in the causes of accidents at
hydrotechnical sports 80
22. Sydorenko V.L., Yeremenko S.A., Tyshchenko V.O., Vlasenko E.A.
Methodological bases of risk assessment of emergency situations at potentially
dangerous facilities of critical infrastructure 84
23. Sydorenko V.L., Pruskyi A.V., Demkiv A.M. Development of the risk of hazards
at industrial facilities of critical infrastructure 87
24. Yudina D.O. Cybersecurity measures for critical information infrastructure
facilities against cyber threats and cyber attacks 89
CHAPTER 3 METHODS AND TOOLS FOR ASSESSMENT OF CYBER
THREATS, TECHNOLOGICAL AND ENVIRONMENTAL THREATS AND
RISKS FOR CRITICAL INFRASTRUCTURE 94
25. Yelisieev V.N., Bykova E.V. Issues of assessment of man-made or environmental
risks for critical infrastructure objects 95
26. Tyshchenko V.S. Methodology of using neural networks for analyzing cyber
security threats and critical infrastructure operations 99
27. Zaika N.V., Popel V.A., Chumachenko S.S. Assessment of the security level of critical
infrastructure based on the complex of tools to protect its objects against UAV101
28. Ivchenko O.V., Palagin V.V. Network security threats at data link level105
29. Kyrychok R.V., Laptev O.A. Methodology for confirming the feasibility of
exploiting detected vulnerabilities in a corporate network using polynomial
transformations of Bernstein 107
30. Laptev S.O., Sobchuk A.V., Ponomarenko V.V., Barabash A.O. Parametric method
of spectral analysis of signals of critical infrastructure objects111
31. Murasov R.K., Chumachenko S.M. Risk assessment of critical infrastructure
facilities, taking into account the potentials of losses from the destructive influence of
the enemy114
32. Sirik A.O., Yevtushenko O.V. Safety requirements and technological threats for
food industry enterprises as critical infrastructure facilities 122
33. Sobchuk V.V., Pichkur V.V., Lapteva T.O., Kopytko S.B. Method of increasing
the immunity of the system of detection and recognition of radio signals for objects of
critical infrastructure 127
CHAPTER 4 SOFTWARE TOOLS FOR ANALYTICS, CYBER THREATS
MODELING SYSTEMS, TECHNOLOGICAL AND ENVIRONMENTAL
PROCESSES AND ACTIVITIES OF CRITICAL INFRASTRUCTURE
FACILITIES 131

34. Honcharenko I.O., Kuchma T.L., Prodanyuk D.M. Knowledge, attitudes, and
practices assessment of public bomb shelter use in Kyivska Oblast132
35. Zaretsky I.S. Modeling indicators of investment systems146
36. Karpenko M.I., Chumachenko S.M., Moshenskyi A.O. Substantiating of the
components for creating a software and hardware complex for detection of radiation
and chemical warfare agents152
37. Khoperskyi S.V., Chumachenko S.M., Ponomarenko S.O., Popel V.A.,
Maslennikova T.A. A model for the restoration of territories with critical infrastructure
damaged by military actions156
CHAPTER 5 INFORMATION SYSTEMS FOR ASSESSMENT OF CYBER
THREATS, TECHNOLOGICAL AND ENVIRONMENTAL THREATS AND
RISKS FOR CRITICAL INFRASTRUCTURE 159
38. Vovchuk T., Shevchenko R., Shevchenko O. Information technologies for the
prevention of emergency situations at chemical industry facilities160
39. Huida O.G., Kiselyov V.B., Ometsynska N.V. Information systems for evaluating
cybersecurity threats161
40. Trysnyuk T.V., Konetska O.O., Nagornyi E.I., Marushchak V.M., Volynets T.V.,
Prystupa V.V. Assessment of the radiation risk of contamination of the area for the
population as a result of military operations163
41. Trofymchuk O.M., Trysnyuk V.M., Shumeiko V.O. Surface water bodies of
ukraine as part of critical infrastructure facilities under the conditions of russian
aggression167
42. Chumachenko S.M., Lysenko O.I., Tachynina O.M., Furtat O.V., Furtat S.O.,
Sushin I.O. Method of collecting information on the condition of critical infrastructure
objects from wireless sensor network nodes 171
CHAPTER 6 INTERNATIONAL STANDARDS IN THE FIELD OF
INFORMATION AND TELECOMMUNICATION TECHNOLOGIES AND
CYBER PROTECTION OF CRITICAL INFRASTRUCTURE FACILITIES 179
43. Viola Vambol, Alina Kowalczyk-Juśko, Sergij Vambol, Nadeem Ahmad Khan
Current state of the potential for waste to energy conversion: overview of the situation
in Poland180
44. Aaron Dumont Environmental protection through international criminal law 184
45. Zaporozhchenko M.M. Legislation in the field of cyber protection of critical
infrastructure facilities188
46. Legominova S.V., Muzhanova T.M. Secure handling protected critical
infrastructure information: the US experience 191
47. Ometsynska N.V., Kiselyov V.B., Huida O.G. Features of the dynamic spectrum
expansion of the optical transmitter
48. Shchavinskyi Y.V., Palchynska V.B. Legal mechanisms for ensuring cyber
protection of objects of critical information infrastructure of Ukraine in conditions of
•
hybrid war 198 CHAPTER 7 MODELING AND SIMULATION OF NATURAL DISASTERS,
EMERGENCIES AND THEIR RESPONSE

49. Miasoyedova A., Divizinyuk M., Shevchenko R. Mathematical models for detecting
the danger of critical infrastructure objects by unmanned aerial vehicles 204
50. Myroshnychenko A., Shevchenko R. Informational methods of emergency
prevention due to explosion in tunnels 205
51. Aldoshin O.O., Kalinovsky A.Ya. Problems of managing the creation and purchase
of fire-fighting equipment 206
52. Vykhvatin M.V. Simulation of restoration systems of safe life activities in
conditions of disaster risk 209
53. Havrys A.P., Yakovchuk R.S., Pekarska O.O. Visualization of Fire in Space and
Time on the Basis of the Method of Spatial Location of Fire-Dangerous Areas215
54. Evlanov M.V., Antoschenkov R.V., Cherepnyov I.A. On the need to create a
register of mathematical models of the human body to improve the effectiveness of
diagnostics in the field of disaster medicine 219
55. Kalinovsky A.Ya., Kravchenko I.I. Fundamentals of using fire trucks223
56. Loik V.B., Synelnikov O.D., Honcharenko M.O. Measures for the protection of the
population and organization of the response during the liquidation of the consequences
of the use of tactical nuclear weapons 226
57. Nazarenko S.Yu., Mandrychenko D.S. Concerning the use and design of a gear
pump for fire extinguishing 230
58. Nazarenko S.Yu., Shapovalov M.M. Measuring complex for determining the
hydraulic resistance of pressure fire hoses232
59. Pichugin M.A., Vinogradov S.A. Use of transparent partitions for fire spread
limitations in shopping and entertainment centers234
60. Samchenko T.V., Nuyanzin O.V. Analysis of applied cfd and fem programs with
their characteristics for cable tunnels236
61. Kalinovsky A.Ya., Sverchkov O.V. A systematic approach to assessing the level
of readiness of units of the operational rescue service of civil protection241
62. Faure E. V., Skutskyi A. B., Lavdanskyi A. O. Simulation model for text and audio
messages transmission in the Simulink environment using non-separable factorial
coding 244
63. Cherepnev I.A., Barbara Savytska, Parisa Ziarati, Barbara Krokhmal-Marchak,
Vambol S.O. Technical measures to reduce grain losses at the storage stage from biotic
factors 247
64. Cherepnev I.A., Vambol S.O., Niloofar Mozaffari, Nastaran Mozaffari The results
of experimental studies of the effectiveness of remote radiothermometry in the field of
medicine of emergency situations251
65. Shakhov S.M., Grechanyk O.S. Development of an autonomous compressed air
foam system254
66. Shakhov S.M., Zinchenko O.O. Study of the efficiency of compressed air foam
generation with domestic foam formers258
67. Yatsenko V.O., Vinogradov S.A. On the issue of protection of personnel in the cab
of a fire rescue vehicle from dangerous factors of fire261
CHAPTER 8 EXPERIENCE IN USING INFORMATION TECHNOLOGIES,
UAVS AND ROBOTS FOR ENVIRONMENTAL MONITORING, PREVENTION

AND ELIMINATION OF NATURAL AND MAN-MADE THREATS FOR
CRITICAL INFRASTRUCTURE OBJECTS 263
68. Bobkov Yu.V., Shevchuk A.A. Use of UAVs and Modern Information
Technologies to Monitor Fields in Precision Agriculture 264
69. Stamati V.G., Vinogradov S.A. Problems of fire extinguishing at energy facilities
and ways to solve them269
70. Tyutyunyk V.V., Tyutyunyk O.O., Usachov D.V. Geoinformation system for
acoustic monitoring of different sources of threats for objects of critical infrastructure
of the city 271
71. Chumachenko S.M., Lysenko O.I., Novikov V.I., Furtat O.V., Furtat S.O.,
Sushin I.O. Development of the method of support and increase of connectivity
wireless networks using UAVs 277
72. Adamova G.V., Pisnya L.A. Environmental safety of operation of motor roads of
ukraine. Assessment methods and tools and cyber security 284
73. Mishchenko I.V., Vambol S.O., Vambol V.V. Construction waste management
during the territories reconstruction in order to environment protection 302
74. Anila Kausar, Ambreen Afza, Altaf Hussain Lahori, Viola Vambol Application of
object based technique for assessment of urban land-use/land cover and air quality 306
75. Anatolii Nikitin, Yevhen Nahornyi, Ruslan Borta, Bohdan Tertiyshnyi
Development of programming algorithm based on the logic of the methodology for
predicting the consequences of radioactive material spills during accidents at nuclear
power plants311
76. Petrukhin S.Yu., Pisnya L.A., Derman V.A. Development of information logical
models for a decision-making support system in the system of environmental
monitoring 318
77. Smirnov S.A., Polutsyhanova V.I. Structure of vulnerability in complex systems
and risk assessment 334
CHAPTER 9 CHALLENGES AND THREATS TO CRITICAL INFRASTRUCTURE
DURING OPERATION AND CLOSURE OF COAL MINES 336
78. Yakovliev Ye.O., Rudko G.I. Threats of a state of ecological chaos for critical
infrastructure facilities in Donbass and Kryvbass under conditions of Russian
aggression 337
79. Yermakov V.M., Chumachenko S.M., Kodryk A.I., Yakovlev E.O. Environmental
and geological factors of the vulnerability of critical infrastructure objects under the
conditions of Russian aggression 342
80. Dyatel O.O., Lubenska N.O., Ermakov V.M. Restructuring of mines of donbas in
the conditions of military actions 346

комплектуючих, контроль якості готової продукції, навчання персоналу, обслуговування клієнтів, роботу з відгуками і рекламаціями і т.п.

Підсумовуючи вищевикладене, можна зробити висновок, що наявність сертифікату на систему управління якістю ISO 9001 це один із механізмів контролю якості виробництва предмета закупівлі на всіх стадіях виробництва та реалізації, відповідно дієвий механізм контролю з боку замовника протипожежної техніки.

В сучасних умовах єдиним засобом контролю з боку ОРС ЦЗ за виробництвом безпечних і якісних пожежних автомобілів могла б стати організація їх обов'язкової сертифікації на заводах-виробниках. На даний момент представники замовника не в змозі забезпечити дієвий контроль за якістю продукції, що випускається.

УДК 351

52.МОДЕЛЮВАННЯ СИСТЕМ ВІДНОВЛЕННЯ БЕЗПЕЧНОЇ ЖИТТЄДІЯЛЬНОСТІ В УМОВАХ РИЗИКУ КАТАСТРОФ

Вихватін М. В.¹

1 Харківський національний економічний університет імені Семена Кузнеця E-mail: vykhvatin.maksym.v@hneu.net

Simulation of restoration systems of safe life activities in conditions of disaster risk

The report defines the values of stationary probabilities of each of the system states in emergency situations in order to prevent the occurrence of bottlenecks in the protection system and timely neutralization of such places even before emergency situations occur. A review and analysis of the current state of the problem of "modeling systems of safe life activities under the conditions of the risk of disasters" was carried out; information and efficiency of self-organizing systems are analyzed. Modeling a freelance situation allows you to prevent the occurrence of bottlenecks in the protection system and timely neutralize such places even before emergency situations occur.

В кожній підсистемі «робоче місце» та в цілому в системі «людинамашина-середовище» безпека праці визначається наявністю зв'язків, які обумовлені наявністю небезпек які можуть зустрітися в навколишньому середовищі, а також, зокрема, на робочому місці. Ці зв'язки можна назвати небезпечними та шкідливими. Вони породжують шкідливі та небезпечні виробничі фактори. Розглядається ситуація, коли «людина» може знаходитися в одному із станів, наприклад, «здорова та дієздатна», «хвора, але дієздатна», «недієздатна». Вона переходить з деякими ймовірностями з одного стану в інший, в залежності від підсистем «машина» та «система» та її стану на попередньому кроці. Велике різноманіття виробничих процесів тісно пов'язані саме з взаємодією комплексу різних шкідливих та небезпечних факторів. Оператор, який знаходиться на робочому місці піддається великій різноманітності зовнішніх факторів, які впливають на його стан, працездатність, продуктивність праці тощо. До цих факторів можна віднести, наприклад, мікроклімат: температура повітря, вологість, шум. Небезпечні та шкідливі фактори так чи інше впливають на оператора протягом роботи. Основною із задач роботодавця — є захист від цих факторів найманого працівника та створення безпечних та нешкідливих умов праці на підприємстві [1].

Кваліметрична модель оцінки вибору алгоритму для вирішення нестаціонарної задачі теплопровідності: властивості якості рішення в вигляді ієрархічної структури при умові, що властивості характеризуються показниками, які кваліметрировані в різних шкалах (від слабких до сильних).

Необхідно оцінити пріоритети методів вирішення досліджуваної задачі за критеріями, які характеризують основні властивості процесу вирішення.

Міра якості визначається за формулою (1):

$$Q = \lambda_T \left(1 - \frac{T_P}{T_H} \right) + \lambda_P \frac{P_P}{P_H} + \lambda_C \left(1 - \frac{C_P}{C_H} \right) + \lambda_F \frac{F_P}{F_H} + \lambda_M \left(1 - \frac{M_P}{M_H} \right), \tag{1}$$

де λ_T , λ_P , λ_C , λ_F , λ_M — коефіцієнти значимості відповідних показників властивостей якості з точки зору дослідження, які визначаються експериментальним шляхом за матрицею парних порівнянь в шкалі Т. Сааті;

 T_P , P_P , C_P , F_P , M_P – значення відповідних показників властивостей якості вирішення;

 T_H , P_H , C_H , F_H , M_H — нормативні значення відповідних показників якості вирішення [2].

Враховуючи різноманітні варіанти кваліметрування проблеми слід обрати аналітично-чисельний метод вирішення задачі виходячи з того, що він має високі показники у векторі глобальних пріоритетів та в варіантах, що розглядаються, відрізняється від найкращих в кожному випадку на незначну величину.

«Людина-машина-система» розглядається із введеним кінцевим простором станів s. Переважній більшості таких систем притаманна марківська властивість, що означає вірогідності переходу до нового стану цілком визначаються теперішнім станом та моментом часу. Перехідні вірогідності Марківського ланцюгу визначені шляхом максимізації інформаційної ентропії системи при обмеженнях типу математичного очікування.

Загальною задачею ϵ визначення величин стаціонарних ймовірностей кожного зі станів системи в надзвичайних ситуаціях. З усіх систем ЛМС виділяються системи з підвищеною активністю першої підсистеми — людини, а з другої підсистеми — «машина» виділяється підсистема другого рівня — захист людини та середовища від шкідливих та небезпечних факторів.

Потік подій зі сторони підсистем «машина» та «середовище» є найпростішим з інтенсивністю λ , а час реакція на них зі сторони «людини»

розподіллено з параметром μ . Ці типи подій можуть привести з заданою вірогідністю до зміни станів системи. Величина $P_i(t)$ є вірогідністю стану S_i системи в момент часу t.

Пропонувалося, що параметри p_i порядку можна виміряти за допомогою експерименту. Припустимо, що система, що досліджується, може бути описана вектором стану

$$q = (q_1, q_2, \dots, q_N), (2)$$

компоненти якого можна виміряти. Індекс і компоненти q_i може означати як номер комірки так і різноманітні фізичні та інші величини. Припускається, що відомі статистичні середні компонент q_i та моменти компонент до четвертого порядку включно. Можна ввести наступні величини в якості обмежень величини f:

$$f_i = \langle q_i \rangle; \ f_i^{(1)} = q_i, \tag{3}$$

$$f_{ij} = \langle q_i q_j \rangle; \ f_{ij}^2 = q_i q_j, \tag{4}$$

$$f_{ijk} = \langle q_i q_j q_k \rangle; \ f_{ijk}^2 = q_i q_j q_k, \tag{5}$$

$$f_{ijk} = \langle q_i q_j q_k \rangle; \ f_{ijk}^{(2)} = q_i q_j q_k q_l. \tag{6}$$

За допомогою множників Лагранжа λ , а також з урахуванням обмежень (3) — (6) можна вирахувати максимум інформаційної ентропії та отримати для інформації величину

$$i = exp\{V(\lambda, q)\},\tag{7}$$

в якій V розраховується виразом

$$V(\lambda, q) = \lambda + \sum_{i} \lambda_{i} q_{i} + \sum_{ij} \lambda_{ij} q_{i} q_{j} + \sum_{ijk} \lambda_{ijk} q_{i} q_{j} q_{k} + \sum_{ijkl} \lambda_{ijkl} q_{i} q_{j} q_{k} q_{l}.$$
 (8)

Щоб виділити аналогію з нерівноважними фазовими переходами, знаходимо екстремум функції V:

$$\frac{\partial V}{\partial q_i} = 0, i = 1, \dots, N. \tag{9}$$

В загальному випадку V може мати не один екстремум, а декілька. Їх положення ми позначимо вектором q^0 . Продовжуючи дослідження нерівноважних фазових переходів q^0 слід вибрати так, щоб функції $V = (q^0 + w)$ була притаманна найбільша симетрія відносно w. Такий вибір приводить до незміщених оцінок. Це випливає з максимуму інформаційної ентропії. До зміщених оцінок приводить тільки більш низька симетрія, яка виділяє деяку структуру. Для іншого способу визначення q^0 як вектора, який вказує на становище відповідного мінімуму слід простежувати еволюцію q^0 від безструктурного стану шляхом зміни керуючого параметру. Припускаючи, що

$$q = q^0 + w, (10)$$

можна записати V у вигляді

$$V(\lambda, q) = \tilde{V}(\lambda, w), \tag{11}$$

Де

$$\widetilde{V}(\widetilde{\lambda}, w) = \widetilde{\lambda} + O + \sum_{ij} \widetilde{\lambda}_{ij} w_i w_j + \sum_{ijk} \widetilde{\lambda}_{ijk} w_i w_j w_k + \sum_{ijkl} \widetilde{\lambda}_{ijkl} w_i w_j w_k w_l,$$
(12)

та, наприклад, коефіцієнти λ_{ij} визначаються виразом

$$\tilde{\lambda}_{ij} = \frac{1}{2} \frac{\partial^2}{\partial q_i \partial q_j} | q^0. \tag{13}$$

Минулі обмеження (3) – (6), представимо у вигляді

$$f_i = \left\langle \frac{\partial}{\partial \lambda_i} V \right\rangle, \tag{14}$$

а також

$$f_{ij} = \left\langle \frac{\partial}{\partial \lambda_{ij}} \right\rangle \tag{15}$$

і так далі, одночасно перетворюються в нові обмеження [3]:

$$\bar{f} = \left(\frac{\partial \tilde{V,w}}{\partial \tilde{\lambda_{ij}}}\right). \tag{16}$$

Оскільки (15) та (16) ϵ симетричними обмеженнями за індексами i та j, то множники Лагранжа так само симетричні за цими індексами:

$$\tilde{\lambda}_{ij} = \tilde{\lambda}_{ji}. \tag{17}$$

Виходячи з цього, ми можемо привести матрицю

$$\tilde{\lambda}_{ij} = \tilde{\lambda}_{ji},\tag{18}$$

до діагонального вигляду з вагомими власними значеннями $\hat{\lambda}_k$. Діагоналізація виконується за допомогою перетворення:

$$w_i = \sum_k a_{ik} \xi_k, \tag{19}$$

де

$$\tilde{V}(\tilde{\lambda}, w) = \tilde{V}(\tilde{\lambda}, \tilde{\xi}), \tag{20}$$

та матриця коефіцієнтів a_{ik} ортогональна.

Перетворення (19) дозволяє привести розподіл (12) до вигляду, який відповідає (20), в якому перша частина в детальному записі приходить до наступного вигляду:

$$\hat{V}(\overset{\wedge}{\lambda},\xi) = \overset{\sim}{\lambda} + \sum_{k} \overset{\wedge}{\lambda_{k}} \xi_{k}^{2} + \sum_{k\lambda\mu} \overset{\wedge}{\lambda_{k\lambda\mu}} \xi_{k} \xi_{\lambda} \xi_{\mu} + \sum_{k\lambda\mu\nu} \overset{\wedge}{\lambda_{k\lambda\mu}} \xi_{k} \xi_{\lambda} \xi_{\mu} \xi_{\nu}. \tag{21}$$

В загальному випадку V має поблизу $\xi = 0$ сідлову точку. Відповідно, ми розрізняємо додатні та від'ємні λ та записуємо:

$$\stackrel{\wedge}{\lambda_k} \geq 0, \, k \to u \ \, (\text{загальне число таких } \lambda \, \, \text{дорівнює } N_u), \qquad (22)$$

$$\stackrel{\wedge}{\lambda_k} > 0, \, k \to s \ \, (\text{загальне число таких } \lambda \, \, \text{дорівнює } N_s).$$

Порівнюючи з результатами, отриманими в мікроскопічній теорії, ми можемо скористатися термінологією теорії нерівноважних фазових переходів. Ті індекси k, які належать $\stackrel{\wedge}{\lambda} \geq 0$, ми замінимо на індекси u (від англ. unstable – нестійкі) та позначимо через ξ_u параметри порядку. Якщо подивитися з іншого боку, ті значення k, які відповідні до $\stackrel{\wedge}{\lambda} < 0$, ми замінимо індексом s (від англ. stable – стійкі) та позначимо через ξ_s амплітуду підпорядкованої моди s [4].

Беручи до уваги це розбиття, запишемо $\overset{\frown}{V}$ у вигляді:

$$\hat{V}(\lambda,\xi) = \overset{\sim}{\lambda} + \overset{\wedge}{V_u}(\lambda_u,\xi_u) + \overset{\wedge}{V_s}(\overset{\wedge}{\lambda_u},\lambda_s;\xi_s,\xi_u), \tag{23}$$

де права частина відноситься тільки до параметрів порядку

$$\hat{V}_{u} = \sum_{u} \hat{\lambda} \xi_{u}^{2} + \sum_{uu'u''} \hat{\lambda} \xi_{u} \xi_{u'} \xi_{u''} + \sum_{uu'u''u''}, \hat{\lambda} \xi_{u} \xi_{u'} \xi_{u''} \xi_{u'''}.$$
 (24)

Що стосується $\overset{\wedge}{V_s}$, то ця частина має такий вигляд:

$$\overset{\wedge}{V_u} = \sum_s (-|\lambda_s|\xi_s^2) + \sum_{suu} \overset{\wedge}{3\lambda_{suu}} \xi_s \xi_u \xi_{u} + \sum_{suu'u''} \overset{\wedge}{4\lambda_{s}} \xi_u \xi_{u'} \xi_{u''},$$

з додаванням суми добутків

$$\xi_{s}\xi_{s'}\xi_{u},\ \xi_{s}\xi_{s'}\xi_{u}\xi_{u'},\ \xi_{s}\xi_{s'}\xi_{s''},\ \xi_{s}\xi_{s'}\xi_{s''}\xi_{u},\ \xi_{s}\xi_{s'}\xi_{s''}\xi_{s''}.$$
 (25)

Інтеграл

$$\int \exp\{\stackrel{\wedge}{V_s}\} \stackrel{\wedge}{d^{N_s}} \xi_s = g(\xi_u) > 0, \tag{26}$$

визначає тільки функцію параметрів порядку ξ_u . Додамо функцію h, визначивши її співвідношенням

$$h(\xi_u) + \overset{\wedge}{V_s} = W_s(\xi_s | \xi_u). \tag{27}$$

Та нову функцію W_s , яка задається співвідношенням

$$h(\xi_u) + \mathring{V_s} = W_s(\xi_s | \xi_u).$$
 (28)

Це визначення гарантує, що величина

$$P(\xi_s|\xi_u) = exp\{W_s(\xi_s|\xi_u)\}$$
 (29)

 ϵ нормованою в просторі підпорядкованих мод при будь якому параметрі порядку ξ_u . Потрібно визначити нову функцію Wu, , щоб розподіл (23) залишався незмінним при введені h. Зробимо це за допомогою співвідношення:

$$\tilde{\lambda} + \tilde{V}_u(\tilde{\lambda}, \xi_u) - h(\xi_u) = W_u(\xi_u). \tag{30}$$

Наприкінці цього розділу запишемо розподіл (23) у вигляді:

$$\hat{V}(\overset{\wedge}{\lambda},\xi) = W_u(\xi_u) + W_s(\xi_s|\xi_u). \tag{31}$$

Це дозволить нам отримати співвідношення

$$exp\{\stackrel{\wedge}{V}\} = P(\xi_u)P(\xi_s|\xi_u), \tag{32}$$

де

$$P(\xi_u) = \exp\{W_u\},\tag{33}$$

а множник $P(\xi_s|\xi_u)$ визначається співвідношенням (29).

 $P(\xi_s|\xi_u)$ є умовною ймовірністю, в той час як $P(\xi_u)$ — функція розподілу тільки параметрів порядку. До цього моменту наш підхід був тільки загальним. Цей спосіб дозволяє нам визначити функцію розподілу для параметрів порядку, розподіл умовних ймовірностей підпорядкованих мод. В окремому випадку, співвідношення (32), окремий випадком принципу підпорядкованості.

Висновки

Класичні системи масового обслуговування адекватно моделюють систему за умови ординарності вхідного потоку та відсутності наслідків і стаціонарності. При дуже невеликих простота потоку даних є справедливою для потоку аварій. Більш ймовірними будуть короткі інтервали між аваріями. Модель системи масового обслуговування підходить для рятувальних підрозділів, для який ліквідація аварії буде «стаціонарним станом».

За допомогою задач оптимізації для інформаційної ентропії розраховані значення перехідних ймовірностей. Цілком зрозуміло, що аварії чи катастрофи мають релеєвські, степенні чи ерлангови закони розподілу. Моделювання позаштатної ситуації дозволяє попередити виникнення вузьких місць системи захисту та своєчасно знешкоджувати такі місця ще до виникнення аварійних ситуацій.

Література

- 21. Небезпечні та шкідливі фактори. URL : https://www.sop.com.ua/ article/206-qqq-16-m6-13-06-2016-nebezpechn-tashkdliv-virobnich-faktori .
- 22. Циба В. Кваліметрія теорія вимірювання в гуманітарних і природничих науках / В. Циба // Соціальна психологія. 2005. № 4. С. 3–20.
- 23. Дзюндзюк Б. В., Наумейко І. В., Сердюк Н. Н. Змістовна модель взаємодії декількох шкідливих факторів на людину // Радіоелектроніка та інформатика. 2000. № 3. С. 131-132.
- 24. Вентцель Е. С., Овчаров Л. А. Теория вероятностей. Москва: Нау-ка, 1969. 366 с.

УДК 614.84

53.ВІЗУАЛІЗАЦІЯ ПОЖЕЖ У ПРОСТОРІ ТА ЧАСІ НА ОСНОВІ МЕТОДУ ПРОСТОРОВОГО РОЗМІЩЕННЯ ПОЖЕЖОНЕБЕЗПЕЧНИХ ДІЛЯНОК

Гаврись А.П., Яковчук Р.С., Пекарська О.О.

Львівський державний університет безпеки життєдіяльності E-mail: havrys.and@gmail.com, <u>yakovchukrs@ukr.net</u>, pekarska86@gmail.com

Visualization of Fire in Space and Time on the Basis of the Method of Spatial Location of Fire-Dangerous Areas

The subject of the study is the forecasting of fires using the spatial location of fire-hazardous areas. To do this, several approaches were used to visualize data in space and time. A temporary map has been created showing the points of fires using a color scheme linked to the date. A series of small multiple visualizations has been developed. A time series has been created in which the regularity of the brightness of points is distributed depending on the date of origin and animated maps that allow you to view data in space and time. In this case, the geographic information system was used as the main tool when working with maps, as it is one of the best ways to process georeferenced data displayed on the map. A space-time cube is displayed, which displays data in 3D format, or rather, fire points, symbolized by the average temperature of the fire (displayed in different colors) in accordance with the day of the month.