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The main shortcomings of the OLS (Ordinary Least Squares) solution to the multiple linear regression problem
under multicollinearity which prevent from obtaining an adequate solution to the economic problem of evaluation of each
regressor's contribution to the regressand have been considered.

The main causes of the OLS incorrectness of the economic problem solution have been revealed, these causes
being related to a great variability in the OLS solution under considerable data multicollinearity.

The research has also shown that mathematically correct standard OLS solutions can become economically
incorrect with data collinearity increasing which leads to diminishing of the OLS matrix codomain of physical correctness.

The current methods for overcoming the OLS solutions' great variability have been considered in both the
economic and mathematical aspects. The current methods have been proved inefficient in overcoming multicollinearity
by either mathematical or economic methods such as choosing the best regressions, lasso, etc.

The analysis has brought to a conclusion that the only way out is to create a new method of solving the OLS
equation which would give a stable solution with small variability, as for example in the ridge method, but with a small
bias. Precisely such method is the Modified OLS (MOLS) proposed in the paper.

The MOLS is an approximate method which uses the known Tikhonov's regularization principle and a new
solution to the regularized OLS equation, based on the modified Cramer's rule which is proposed in the paper.

The MOLS method has proved to give a stable and practically unbiassed solution to the linear regression problem
regardless of the near-collinearity level of the data used. Unlike the ridge method, the MOLS method gives a negligible
bias and does not require optimization of the regularization constant.

The proposed MOLS method has been verified for adequacy with the aid of the artificial data population (ADP),
which is based on the Monte Carlo simulation method. Using the ADP, the new MOLS method has been checked for
biassedness and stability for both small and large samples.

Keywords: multicollinearity, stable solution, negligeable biassedness, mathematical correctness, physical correctness,
ridge regression.
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HOBWN METO[] CTABINIbHOIO PO3B'A3AHHHA
3A0AYI JNIHINHOI PEIPECII
B YMOBAX MYJIbTUKONIHEAPHOCTI

TuxHeHko O. I'.

Po3ansiHymo ocHoeHi Hedoriku piwueHHs bazamoghbakmopHoi 3adayi NiHitHOI peepecii 3a Hasi8HICMIO MybMUKO-
niHeapHocmi Mmemodom HalimeHwux keadpamie (MHK), ski He o3gonsomb ompumamu adekeamHe 8UPIEHHSI €KOHO-
MiYHOI Ipobremu ouiHI8aHHS 8IMIUBY KOXHO20 OKPeMO20 pespecopa Ha 8id2yK.

BusienneHo OCHOBHI npuUYUHU MOSIBU HEKOPEKMHUX PO38'A3Kie eKOHOMIYHOI 3adayi peaspecii MamemMamuyHUM Memo-
dom HalmeHwux keadpamis, siki No8'si3aHi 3 serukoro eapiabensHicmio MHK-piweHHs1 3a 3Ha4HOI KoniHeapHocmi OaHuUX.

lNoka3aHo, W0 HEKOPEKMHI 3 MOYKU 30pYy €KOHOMIKU MameMamuyHi po3g'a3ku cmaHO0apmHozo MHK euHukatomb
y pasi 36inbweHHs1 pieHs1 KorniHeapHocmi OaHUX 3a paxyHOK 3MeHWeHHs1 obracmi gisuyHoi kopekmHocmi MHK-mampuu.

Po3sznsiHymo icHyto4i Ha cb0200Hi MemoOdu rnodornaHHs 8ernukoi eapiabensHocmi MHK-piweHb ik 3 @KOHOMIYHOT,
mak i 3 MamemMamu4Hoi moyku 3opy. OmpumaHo nepekoHnusi 0oka3u HeeghekmusHocmi yux memodie ModonaHHs rnpoo-
n1ieMu MyribmukorniHeapHocmi sik 3 60Ky Mamemamuku, mak i 3 60Ky eKOHOMIHHO20 po32/1si0y CrpPOWEeHHSI caMOi eKOHO-
Mi4yHOI npobnemu: subip Halikpawux pezpecil, lasso ma iH.

lposedeHull aHaniz do3805u8 3pobumu 8UCHOBOK, W0 €0UHUU 8UXiO i3 iCHyr4YOi cumyauil — cmeopumu Ho8i
memodu po3e'sasaHH MHK-pieHsHHS, siki 6 0asanu piweHHs1 3 Masot eapiaberibHicmio, 5K 8 pidx-memodi, Hanpukniad,
ane 3 manum 3miueHHsaM. Came makum memodOoMm € Hosul moducgpikosaHuli Memod HalimeHwux keadpamis (MMHK),
sKkul nodaHo 8 pobomi.

MMHK € HabnuxeHum MemodomM, 8 SKOMy 8ukopucmaHo Memoo0 peaynspu3ayii TixoHosa i Hosuli Memod po3e's-
3aHHsA peaynsapu3osaHo2o MHK-pieHsiHHS, 3acHosaHul Ha molducpikosaHomy memodi Kpamepa, w0 3arnpornoHosaHo
8 cmammi.

lMokasaHo, wjo MMHK dae cmilike ma npakmu4yHO HesMiujeHe pPo38's3aHHs 3adaui niHitHOI peegpecii 3a 6y0b-
K020 pigHs1 KoniHeapHocmi OaHux. Ha eidmiHy 8i0 memoOly piox-peepecii, MMHK nokasye Oyxe mane 3MiljeHHs
i He nompebye onmumizauii KOHcmaHmu peaynsapu3sauii.

BanponorosaHuli y pobomi MMHK nepesipeHo Ha adekgamHicmb 3a O0OMOMO20K0 WMYyYHOI 2eHeparbHoI CyKyn-
Hocmi (LUIC), sika cmeopeHa 3a donomozoo memody Morme-Kaprno. 3asdsiku eukopucmaHHo uiei LLIFC rnokasaHo
K npakmuyHy HeamiweHicmbs MMHK, mak i sucoky cmabinbHicmb po3e'a3aHHs 3adayi peepecii i 0515 8enuKux,
i dnst manux eubipok.

Knroyoei cnoea: mynbmukoniHeapHicmb, cmabinbHull po38'a30kK, Oyxe marne 3MiUeHHs, MamemMamu4yHa KOpeKkm-
Hicmb, Qi3u4Ha KOPEeKMHicmb, PidX-peepecis.
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HOBbIA METOO CTABUIIbHOIO PELLEHUA
3A0AYU TIMHEUHOW PEFPECCUU
B YCNOBUAX MYNTIbTUKONNMUHEAPHOCTHU

TbpxkHeHKO A. T,

PaccmMompeHbl 0CHOBHbIe HedoCcmamKu peweHuUs MHO20¢hakmopHOU 3adaqu UHeUHOU pezspeccuu 8 ycriosusix
MyrnbmukonnuHeapHocmu memodom HaumeHbwux keadpamos (MHK), komopbie He rno3eonsom nony4ums adekeam-
HOe peuweHuUe 3KOHOMUYeCcKOU rnpobrieMbl OUEHKU 8MUSIHUST Kax 0020 omOesibHO20 pespeccopa Ha OMKIIUK.

BbisigrieHbl OCHOBHbIE MPUYUHbI HEKOPPEKMHO20 PEeWeHUsT 3KOHOMUYecKol 3adaqu pespeccuu Mamemamu4e-
CKUM MemodOM HauMeHbUWUX Keadpamos, Komopble cesizaHbl ¢ bonbwol sapuabenbsHocmbio MHK-peweHul npu 3Ha-
YumersibHOU KonnuHeapHocmu OaHHbIX.

lNoka3aHo, YMO HEKOPPEKMHbIE, C MOYKU 3PEeHUsT IKOHOMUKU, Mamemamuyeckue peweHusi cmaHdapmHozo MHK
B03HUKaKOM Mpu ye8esiu4eHuUU ypoB8HS KOITUHeapHoCmu 0aHHbIX 3a cyem yMeHbWeHUs1 obrnacmu ghuauvyeckol KoppeKkm-
Hocmu MHK-mampuubl.

PaccmompeHbI cyujecmeyroujue Ha ce200HSAWHUL 0eHb MemoObl 6opbbbi ¢ 6onbwol sapuabenbHocmbio MHK-
peweHul Kak ¢ 3KOHOMUYeCKoU, maK U ¢ Mamemamuyeckol moyek 3peHusi. [onyqeHb! ybedumerbHbie 0oKa3amerbcmea
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HeaghpekmusHocmu cyuecmsyrouux Mmemodos rnpeodosieHUs1 MyfbMmUKOIUHeapHoOCMU KakK coO CmMopoOHbI MameMamu-
KU, maK U €O CIMOPOHbI 9KOHOMUYECKO20 paccMompeHusi crnocoboes yrnpoweHusi camol 3KoHoMu4eckol npobremsl: 8bl-

6op Haunydwux peepeccud, lasso, u m. 0.

lposedeHHbIl aHanus noseosnsem coenamb 8bI1600 O MOM, YmMO eOUHCMEEHHbIU 8bIX00 U3 cyuwecmsyrouiel
cumyayuu — cos0aHue Hoebix Memodoe peweHusi MHK-ypasHeHusi, komopbie dasanu 6bl peweHusi ¢ Manol eapua-
benbHOCMbIO, KaK 8 pudx-memode, Harpumep, HO C MasbiM cMeweHuUeM. VIMeHHO makum mMemodom s8119emcsi Ho8bIl
modlucpuyuposaHHbIl Memod HaumeHbwux keadpamos (MMHK), komopsiti npedcmasneH 8 pabome.

MMHK sisnissemcs npubrnuxeHHbIM MemoOOM, 8 KOMOPOM UCMO/b308aH U3BECMHbIU MPUHUUN peaynspu3ayuu
TuxoHo8a u Hosbill Memod peweHus peaynsipuzosaHo2o MHK-ypasHeHus, 0CHO8aHHbIU Ha MOOUGULUPOBAHHOM Memo-

Oe Kpamepa, komopbili npedrioxeH 8 cmambe.

lNokasaHo, ymo MMHK daem ycmodliqueoe u npakmu4ecku HECMEUWeHHoe peweHue 3adadu fuHelHolU peaspeccuu
npu nobom yposHe KosnnuHeapHocmu OaHHbIX. B omnudue om memoda pudx-peepeccuu, MMHK noka3bieaem HUYMOXHO
Mmarioe cmeweHue u He mpebyem onmumu3ayuu KOHCmaHmMbI peaynsapusayuu.

lpednoxeHHbil 8 pabome MMHK nposepeH Ha adekgsamHOCMb C MOMOWbIO UCKYCCMBEHHOU 2eHeparibHOU Co-
g8okyrnHocmu (UIC), coz0aHHoU ¢ nomowibto memoda MoHnme-Kapro. bnazodaps ucnons3osaHuto amol MIC nokasaHa
Kak npakmu4veckas HecmeuwieHHocmb MMHK, mak u ebicokasi cmabunbHoCmb peweHul 3adaqu nuHelHoU pezspeccuu

u 0nsa 6onbwux, u 01 marbiX 8b160POK.

Knrodeeble croea: MynbmUKOJIIUHEAPHOCMb, CcmaburibHoe peweHue, HUYMOXHO Masasi CMeWeHHOCMb,
MamemamuyecKasi KOpPEeKMHOCMb, (huaudecKkasi KOPPEKMHOCMb, PUOXK-PESPECCUs.
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An economic insight into the multiple linear regression
solution can be provided as the obtaining of significant
estimates of regression coefficients that represent the
mean change in the response variable for one unit of
change in the predictor variable with other predictors in the
model being constant.

It is clear from the economic point of view that the
mathematical solution to the linear regression problem
must be stable and the regression coefficients obtained
must have the same signs that the partial regression
coefficients between the regressand and regressors have.
It is known that this is frequently not the case if the
regression problem is solved with the aid of the common
OLS method.

A new method for finding a solution to the linear
regression problem has been proposed in which a common
great instability of the OLS has been overcome.

This problem has been considered under the following
assumptions: the residual error is normal, e~N(0, oI); the
relationships between variables are linear in the population;
all assumptions of the Gauss-Markov theorem are fulfilled.
Non-stochastic regressors are considered.

From a mathematical point of view, the linear regression
problem is formulated as the curve fitting problem [1 — 7].
The OLS method of solving the linear regression problem
can give an adequate solution to the economic regression
problem if the regressors are near-orthogonal. Unfortunately,
this is not the case in practice.

The main drawback that prevents the OLS solution to
an economic problem from being adequate is the near-
collinearity of regressors [8 — 19].

In terms of just a curve fitting problem, the OLS always
gives mathematically correct result regardless of the
regressors' collinearity level (the VIF-factor, for example).
However, with the VIF-factor increasing, the variability of
the OLS solution drastically increases for not very large

samples. This fact prevents from getting an adequate
economic solution to the regression problem in practice.

The data near-collinearity is not the single source of
the regression solution errors. Another source of errors is
the non-linearity of the population that is investigated. This
problem concerns the regression model inadequacy and
may, in principle, be eliminated with the aid of appropriate
data transformations.

A very important source of errors in regression solutions
is wrong model specification [9; 12], but this problem is
connected with economic considerations and has not been
considered in this paper.

Different remedies have been proposed to dealing
with ill-conditioning and near-collinearity including regularization
and ridge regression, omitting variables, grouping variables
in blocks, collecting additional data and so on [4; 9 — 17,
19 — 21].

However, these remedies may be time consuming,
costly, impossible to achieve or controversial [22]. Also,
the diagnostic tools that signal the presence of near-collinearity
are crucial. More than that, the author agrees with [23] that
any signal of multicollinearity does not exist at all because
"multicollinearity is a matter of degree rather than one
of a kind".

Despite the theoretical warnings about the inadmissibility
of using OLS in the presence of near-collinearity of any
level, this technique is still in use in practice, in economic
and other studies with attempts to reduce somehow the
level of collinearity. Many years of efforts did not yield any
results in the search for a critical level of near-collinearity.
It seems that A. C. Harvey in [23] was right that there
is no such a critical level at all and the influence of near-
collinearity in any OLS solution is a continuous process
which depends on many parameters. This issue is also
confirmed by the following further considerations of OLS
solution properties.
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With a sample size decreasing, the presence of the
data near-collinearity usually leads to an unacceptable
increase in the OLS estimates dispersion which makes the
OLS solution inadequate in terms of economic content. For
instance, signs of the OLS estimates may be incompatible
with their economic meanings.

Such a behavior of OLS solutions immediately follows
from the Cramer's rule and the determinant decomposition
by matrix eigenvalues. The presence of small eigenvalues
in the numerator and the denominator of the Cramer's
formula can lead to significant changes in the solution due
to random changes in the data observed and then in
eigenvalues.

As for the appearance of incorrect signs in the OLS
solutions, that is when solutions have no economic (in general,
physical) sense, this phenomenon, as shown in the paper,
is connected with the fundamental property of nonsingular
square matrices.

It has been revealed that any non-singular matrix
operator has a codomain that consists of two parts which
the author calls codomains of physical correctness (D€)
and incorrectness (D°) of the corresponding matrix equation
solution.

That is, any matrix equation Ax = b always has a
mathematically correct solution but such a solution may be
either physically correct or physically incorrect. A solution
is physically correct if it has an economic (a physical) meaning.
The solution of the same equation is physically incorrect if
it has no physical meaning. In the latter case, the solution
necessarily changes the signs of some solution components.
This issue depends on the RHS, b, only. That is, a solution
to the matrix equation Ax = b is physically correct if b € D€;
and it is incorrect otherwise.

It has been shown that this effect holds for any
matrix equation with a square non-singular matrix.
However, with the matrix conditional number increasing,
the codomain of physical correctness, D¢, is becoming
narrower. This issue may lead to the right-hand side (RHS)
of the matrix equation being outside of D¢ due to random
errors in the matrix elements. If it is the case, there will be
a change in signs of the solution components. This is often
observed in OLS solutions to the regression problem due
to their large variability.

Thus, the main drawback of the OLS method is a
narrow codomain of physical correctness in the presence
of near-collinearity and high variability of a solution in the
case when an observed sample size is not very large. Both
these effects promote the exit of the RHS from the D¢
under the influence of random errors. This one does not
allow finding out the appropriate estimates of regression
coefficients in the population.

The advantage of the OLS is the unbiassedness and
consistency of a solution and its variance, i.e. a reduction
of the sample regression coefficients' variance with a
sample size increasing and the approach of the mean
value of the OLS solutions to the regression coefficients of
the population, which makes it possible, in general, to
estimate, with the aid of data modeling, the adequacy of

the regression problem solution when this problem is solved
by any other method.

Thus, due to the properties of OLS solutions which
are proved theoretically, one can test the regression
problem solution results obtained by other methods for
which the closeness of the estimated coefficients to the
population ones cannot be proved theoretically.

As to the influence of near-collinearity on the variability
of the OLS solutions, the prior investigations unambiguously
show the need to create new methods for solving the
linear regression problem, which would give a small bias
and acceptable solution variability for not very large
samples.

Any new solution to the linear regression problem
should give the regression coefficients with probability
approaching the coefficients of the OLS solution when
sample size increases unlimitedly. This issue is a consequence
of OLS solution unbiassedness and consistency, which
permits us to test a new method with the aid of data
simulation.

The unbiassedness and consistency of OLS solutions
is also manifested in the fact that the mean of many times
(M > 1) repeated OLS solutions for samples of limited
size (n) drawn out of a population converges in probability
to the population solution (regression coefficients) with M
increasing. This one is also used in the paper for testing
the new methods for solving the linear regression problem
with the aid of the artificial population (ADP) worked out
for this purpose.

In this paper, a new method (MOLS) is proposed
which produces stable solutions with negligibly small bias
to the linear regression problem under near-collinearity of
any level for samples of any size.

The MOLS is based on the OLS for standardized
variables with some modifications. The OLS matrix equation
X'Xb =X'Y is replaced by the regularized equation
(X'X + al)b = X'Y for @ = 0.001. This equation is solved
further with the aid of a modified Cramer's rule which is
suggested in the paper.

Unlike the ridge regression, the modified OLS (MOLS)
method gives practically zero bias and does not require
the regularization constant (a) adjustment for any collinearity.

The only disadvantage of the MOLS is large
computer loading that prevents from applying this method
for a large number of regressors (more than 200 — 300).

The adequacy of the new method (MOLS) has been
verified in this research with the aid of a special Artificial
Data Population (ADP) developed in the paper. The linear
regression problem modeling with such a population
differs from the standard one [24] in that it does not use a
priori giving regression coefficients in a population. Thus,
the ADP method simulates a population with unknown
regression coefficients with values that can be precisely
estimated by the OLS solution for a very large sample
size, using its consistency.

The essence of the ADP method consists in a priori
giving a regressand vector Y and setting the regressor
vectors {X;} geometrically with given angles to the regressand
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vector. With the angle between the regressor and regressand
vectors diminishing, the absolute value of the corresponding
regressor' coefficient should increase. If two regressors, for
instance, have the same angle to the regressand, the
corresponding regression coefficients in population should be
equal. If two regressor vectors have angles with the regressand
vector which differ by /2, their regression coefficients should
have opposite signs and be equal in the absolute value.

Then, with such an artificial population in hand one
can construct various situations for the population regression
coefficients which allow estimating the adequacy of new
methods for solving the linear regression problem. For each
modelled situation with population regression coefficients, one
has an opportunity for estimation of the population regression
coefficients with the aid of the asymptotic OLS solution. This
one makes it possible to estimate both the biassedness and
variability of any new linear regression solution for any
sample size.

Creating a new method data simulation (ADP) for testing
the linear regression problem solutions is connected with
the incorrectness of the common simulation method [24]
for multiple regression in which for a priori given regressors,
{X;}m. and population regression coefficients, {b;},, one set
many times (M) a random residual error, {e},, for calculating
M regressand realizations, {Y},,.

The matter is that the given regressors, {X;},,, define
exactly the OLS-matrix X'X of the matrix equation
X'X b=X'Y, which has a definite codomain of physical
correctness, D€. In order to make this matrix equation
have a correct solution, the RHS X'Y should belong to
this D¢. If we set the population regression coefficients
arbitrarily, we make the regressand Y arbitrary as well and
so the RHS X'Y. Such calculated RHS may not belong to
this D€. This one will lead to physically incorrect solution to
the linear regression problem. The situation may change
only if we take those a priori regression coefficients which
are close to the population coefficients. However, it is not
probable to guess randomly the regression coefficients
which are close to the true ones.

It is worth noting again that the developed ADP
permits us not only to test the biassedness of the new
method for finding a solution to the linear regression
problem but also to estimate the variability of sample
regression coefficients. For this purpose, we can draw a
large series of replicas from the ADP with a given size and
calculate the standard deviation of regression coefficients
obtained by the OLS and the new method.

From a mathematical point of view, the solution of
the equation Ax =b is a vector x that gives a zero
discrepancy: | Ax — b ll= 0. Herewith, the question of what
real problem is to be solved is not raised. However it does
not necesseraly result in an error. For instance, this is the case
with the basis changing problem in the vector space.

In most real problems connected with the equation
Ax = b, one has to consider the context of the problem. It
has been revealed that a common condition of zero
discrepancy does not indicate the correctness of a real
problem solution.
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Definition: any n-dimensional nonsingular square matrix
A over the reals has the R™ as its codomain which consists
of two parts, D€ and D¢ (D°U D¢ = R™), where D€ is the
codomain of physically correct solution of the matrix equation
Ax=b (b€ D) and D¢ is the codomain of physically
incorrect solution of the matrix equation Ax = b (b € D°).

If b € D¢, the signs of exact solution of the equation
Ax = b are consistent with the signs needed for the real
problem under investigation and are stable for any
condition number of the matrix 4 if random errors of the
matrix elements do not remove the RHS b from D€.

Otherwise, if b € 55, the signs of the exact solution
of the equation Ax = b are not consistent with the signs
needed for the real problem that is investigated with this
equation.

In general, the exact solution of the equation Ax = b
changes the signs of some solution components when the
vector b passes from D¢ to D°. The absolute values of
solution components depend on the orientation of the RHS
vector and increase with the matrix A condition number
increasing if b € D°.

Both these issues are inappropriate for a real
problem that is investigated. More than that, if b € D€, the
exact solution of the equation Ax = b is unstable in the ill-
conditioning case, cond(4) » 1. Geometrically this one
follows from projection properties. If the RHS is outside of
D¢, projections of the RHS on the basis vectors increase
with the RHS moving away from D¢. The more is the
condition number of the matrix, the narrower is D€. This
one enlarges the projection values and, consequently, the
absolute values of solution components.

Because the linear regression problem OLS solutions
are based on the matrix equation solution, in the case of
near-collinearity such solutions may reveal both the appearance
of unexpected signs of the regression coefficients and their
abnormal absolute values.

The first problem is connected with the exit of the
OLS-equation RHS from the codomain of physical correctness
(D€) due to random errors in the observed data.

The second problem relates geometrically to a
narrow D¢ and mathematically to a small determinant of
the OLS matrix in the presence of random errors in the
matrix elements.

Consider the first problem of unexpected signs of the
regression coefficients using the example of a two-
dimensional full rank matrix equation:

Ax =b & a1xy +ax, = b, Q)
a a b
where a; =| | ay=| | b=| |
a1 azz b,

From the geometrical point of view, equation (1) is
the coordinate-wise representation of the vector b with
respect to the basis {a;, a,}.

Suppose, the angle between the basis vectors a, and
a, is significantly smaller than 90°; vector b is located between
them; all vectors belong to the 1st quadrant (Fig.).
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1) b belongs to the codomain of physical correctness
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Fig. The geometric interpretation of the appearance of physically incorrect solutions

In both pars of the figure the right-hand side vector b
is represented as a sum of two components, e; and e,,
in the basis (ay, a,) of the matrix columns. The bold lines
limit the 2D region D¢ of physical correctness from the
outside in both directions from the origin. In part 1 of the
Fig. the right-hand side b belongs to the region of physical
correctness. Both solutions have the same signs. In part 2
of the Fig. the right-hand side b does not belong to D€.
Both solutions, e; and e,, become larger in value and have
different signs.

Let a small 2D area between vectors (a,, a,) and
(—a,, —a,) be the matrix A codomain of physical
correctness, D¢ (Fig., part 1). The vectors e; and e, in
Fig., part 1 are the projections of vector b on the basis
vectors a, and a,. In this case, both equation (1) solution
components are positive (x; = |e1], x, = |e,]). Similarly, if
for the same basis vectors the RHS has the inverse
direction (—b) and is located between —a; and —a,, then
both solution components are negative. In both of these
cases the solutions have the same signs.

Another situation is shown in Fig., part 2, where the
RHS vector b is located between vectors —a,; and a, (in
the wide 2D area denoted as D€). In this case the solution
components have different signs, (a; = —e;, a, = e, ).
A similar situation will be observed if only the basis vector
a, changes the direction.

This simple example demonstrates the fundamental
property of non-singular matrices: the matrix equation

Ax = b has fundamentally different solutions for b € D¢
and b e D°. If € D¢, the solution of this equation is
mathematically correct but has no physical meaning.
Which part of the whole codomain (R™) is D€ should be
determined from economic considerations. It is worth
noting, that this property is not connected with the
conditioning of the matrix equation.

Summarizing, any determined matrix equation Ax = b
has both physically correct and physically incorrect
solutions depending on the RHS. In both cases solutions
are mathematically correct.

Let us demonstrate the existence of the fundamental
property of non-singular matrices using the example of a
simple economic problem.

A 2D selling problem. Suppose you are selling hot
dogs and sodas. Each hot dog costs $1.50 and each soda
costs $0.50. At the end of the session you made a total of
$78.50. You sold a total of 87 hot dogs and sodas combined.
You must report the number of hot dogs sold and the
number of sodas sold. How many hot dogs and sodas
were sold separately? Shortly: one hot dog costs $1.5;
one soda costs $0.5. The common sale is $78.5. The
common number of units sold is 87. How many hot dogs
(x1) and sodas (x,) were sold separately? The system
(Ax = b):

1.5x; + 0.5x, = 78.5
{ X1 +x, =87 @
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With det(A) = 1; cond(A) = 4.27. Clearly, it is a well-
conditioned system. Gauss' solution in the Matlab is
x = A\b = (35;52). The basis vectors have the following
coordinates: a; =(15;1),a, =(05;1). Let us write down
the RHS as follows: b = 87(0.9023;1). Then, it is clear
that the RHS vector lies between a, and a, and belongs to
the codomain of physical correctness, D€, since its
projections on a; and a, are positive as it should be from
economic considerations.

Let us consider further the system (2) solution
behavior with the RHS vector b changing if the common
sale is fixed, b(1) = $78.5.

The marginal values of the RHS vector b inside the
D€ can be determined from the parallel conditions: b||a;
and b||a,. That is:

b, = (78.5;157), b_ =(78.5,52.3).

According to the economic meaning of the problem,
we take b_(2) = 53. So, the common number of units sold
can vary within (53; 157) in order that b € D€.

If b=(785;53), the solution is x = (52;1). This
means that 52 hot dogs and one soda were sold. If
b = (78.5;157), the solution is x = (0; 157). This means
that no hot dogs but 157 sodas were sold. It is clear, that
inside D€ there are also other RHSs that give the whole
solutions. For example, for b = (78.5;109) we have the
solution x = (24; 109).

In any other practical situation, one can also sell a
part of the unit and then the solutions do not have to be
whole numbers. In the general case, we can find a
solution of such an equation in real numbers.

Suppose the right-hand side vector b does not belong
to the D°. It is the case if b(2)<52.3 or b(2) > 157.
For example, let the common number of units sold be
b(2) = 51. Then the solution is x = (53; —2). This solution
is incorrect relative to the investigated problem. Suppose
now that b(2) = 159. Then, x = (—1; 160) and the solution
is also incorrect. This means that we cannot set arbitrary
the RHS of equation (1) if we investigate any practical
problem. If we do that, we can obtain a solution with wrong
signs despite the fact that the system is well conditioned.

This example demonstrates an important property of a
linear system solution as regards the adequacy of the solution
to the economic problem which is investigated with the aid
of this linear system. If the RHS of a system does not belong
to the system matrix codomain of physical correctness, a
mathematically correct solution to this system will be not
correct for the practical problem under investigation.

Because a linear system solution necessarily
changes the signs of some solution components when the
RHS passes from one codomain to another one, the
codomain of physical correctness can be easily determined
if a practitioner knows exactly what signs are correct. This
is the case with the regression problem, for example, in
which one knows that the regression coefficients must
have the same signs as the correspondent partial
regression coefficients for the regressand and regressors.
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There is no consensus in the economic literature on
the discussion of the OLS-solution properties. As an aside,
the matrix equation Ax = b with a non-singular square
matrix A should always have a unique solution for any
b € R™ from the mathematical point of view. As another
aside, it is clear that for ill-conditioned matrices (4) the
matrix equation (Ax = b) solution may be not always true
from the point of view of the applied problem that is
investigated.

This situation was characterized by [12] as follows:
"Multicollinearity is God's will, not a problem with OLS or
statistical technique in general”. "Only use of more economic
theory in the form of additional restrictions may help alleviate
the multicollinearity problem." "One should not, however,
expect miracles; multicollinearity is likely to prevent the
data to speak loudly on some issues, even when all of the
resources of economic theory have been exhausted."

The situation with multicollinearity, as described by [12],
has not changed to date [4 — 6; 19; 22], as far as the
author knows.

As can be seen from the above description, the OLS
solution to the problems under multicollinearity is connected
with the ill-conditioning of the OLS matrix equation Ax = b,
which, as any non-singular matrix, has its codomains of
physical correctness (D€) and incorrectness (50). The
increase in near-collinearity level in data tends to increase
the condition number of the OLS-matrix and then leads to
a contraction of the physical correctness (D€) codomain.
Besides that, the increasing of ill-conditioning level tends
to increase variability of OLS-solutions due to decreasing
of the OLS-matrix minimal singular number. Both these
issues can drastically spoil the OLS solution to the linear
regression problem: the regression coefficients may be too
large in values and become of wrong signs if the errors
in data remove the RHS of the matrix equation from the
physical correctness (D¢) codomain which has become
too narrow.

In general, the instability of the OLS solutions to the
linear regression problem depends on two parameters
only: the VIF-factor and the sample size. With the VIF-factor
increasing, the volatility of the OLS solutions increases.
With the sample size increasing, the volatility of the OLS
solutions decreases. For any value of the VIF-factor one
can find so large a sample size that for any sample, the
RHS of the OLS matrix equation will belong to the physical
correctness (D€) codomain and the OLS solution will be
consistent and economically correct. For small and not
very large samples this is not the case, as a rule.

It is also worth noting that a physically correct and
consistent OLS solution may have yet sufficiently large
standard deviation, because it is desirable to estimate the
standard deviation of the obtained solution by the Monte
Carlo simulation. The method of this kind is proposed in
this paper.

Summarizing, the only fruitful strategy for overcoming
the near-collinearity in the linear regression problem is
the construction of new methods for finding a solution to
this problem which would provide consistent physically
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correct solutions with standard deviations much less than the
absolute values of the solution components (regression
coefficients). Besides, such methods would be negligibly
biassed.

For obtaining a stable solution to the linear regression
problem in the standardized form, the author has proposed
a modified OLS (MOLS) solution using the modified
Cramer's rule, instead of the Gauss' method solution to
algebraic systems.

The MOLS is based on the OLS for standardized
variables with some modification: the OLS matrix equation

X'Xb=X'Y 3

is multiplied by (X'X)" and replaced by the regularized
equation

(X'X)'(X'X) + aDb = (X'X)'X'Y )

with @ = 0.001. This equation is solved further with the aid
of the modified Cramer's rule.

The modified Cramer's rule is intended to solve
definite ill-conditioned systems X'Xb = X'Y that arise in
the standardized linear regression problems (all variables
are standardized). For brevity, let us write down this
system as usual:

Ax =D, ®)
with A = X'X, x = b, b = X'Y. Multiply further (5) by A":
A'Ax = A'b.

Let us denote further: A’A = H,, A'b = b, and solve
the equation

Hyx = b;. (6)
Taking into account a possible ill-conditioning of the
matrix H,, let us reduce the conditioning level by adding a
regularizer to H,. Let us designate the new matrix by H:
H=H,+aE,
where E is the identity matrix and 0 < a < 1 (an
optimal value that gives a minimal residual sum of squares
(RSS) is @ =0.001). Let us replace equation (6) by a
regularized equation (basic and single approximation):

Hx = bl' (7)

According to the Cramer's rule, the solution of this
equation can be written as

X ==L, ®)
where A; = Y7_ (=1)/**B, (k) det(H (tx, t;)), (9)

A=YRoy (1) FH(k, ) det(H (i, ), (10)

and tp =1,2,..,k—1k+1,..,n. Here, H(ty,t;) is the
matrix H from which the k-th row and j-th column are crossed
out, H(k,j) is the (k,j) element of the matrix H. That is,
formulas (8 — 10) are figured out as the common Cramer's
rule in which the Laplace' formula is used.

In (8) we always can multiply the numerator and
denominator by any determinant of some nonsingular
matrix. As a matrix of this kind, we take H]-‘1 — the inverse of
the matrix H;, where H; is the matrix H, from which the j-th
row and j-th column have been crossed out. For each j we
multiply the numerator and denominator in (8) by a different
determinant det(H]-_l). Using the determinant property:

det(AB) = det(A) det(B),

we can write down the determinants (9, 10) as
follows:

= ko1 (—1)74EB (k) det(Hj H(t, t)))

~EJ : (12)
A = Yoy (=1)7*kH, (k, ) det(H; ' H (t, t;)),

(12)

with no changes in solution (8) to equation (7). Then, the
approximate solution to equation (3) can be written as
follows:

Xj=A; 1A (13)

As the research has shown, such a simple transformation
leads to substantial stabilization of the solution to the
linear regression problem under near-collinearity if one
chooses the regularization constant @ = 0.001 (the MOLS
method). Regardless of the collinearity level, equation (13)
gives a practically unbiassed solution using the MOLS in
the linear regression problem and practically the same
small variance of the regression coefficients as in the
correspondent ridge regression solution with regularization
constant A = 0.5.

A disadvantages of the MOLS is high complexity of
calculations which prevents from using this method for big
data analysis with the number of regressors larger than
200 — 300.

It should be noted that the outlined modified
Cramer's rule should not be used for solving common ill-
conditioned linear systems of large size. For common
systems this method is subject to accumulation of
computational errors while computing the determinants.

In standardized regression problems the computational
errors are mutually neutralized due to data centering. This
issue makes it possible to solve the linear systems with
sufficient accuracy up to the order of 200 — 300 (regressors).

It is worth noting, that both the MOLS and ridge
regression are approximate methods for stabilization of
the OLS under near-collinearity. Both methods use the
same idea of regularization of the ill-conditioned OLS
matrix equation with the aid of replacement of the original
matrix (A) by the one that is close to it (A + al) [10; 25;
26]. However, the difference between the MOLS and ridge
methods is that in the MOLS, a neutralization of ill-conditioning
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is used with the aid of multiplication of the matrix H (ty, t;)
by the inverse matrix Hj‘1 in (11), (12). Such neutralization
drastically improves the situation with ill-conditioning for a
very small regularization constant (e« = 0.001) and reduces
significantly the dependence of the solution on this
constant. The latter one allows us not to search for the
optimal value of this constant. In all cases one can use the
only constant value of « = 0.001. That one allows obtaining
in all cases practically the same RSS for the MOLS as for
the OLS.

The disadvantage of the MOLS, as well as of the
ridge regression, is the lack of the ability to estimate
theoretically the variance of the regression coefficients
obtained with the aid of the observed sample.

Then, for any new method for finding a solution to the
linear regression problem, we have to estimate both the
biassedness of a solution and its variance. Let us consider
these issues with the aid of the Monte Carlo simulation method.

To test any new method for solving a linear regression
problem for adequacy, the author used the artificial data
population (ADP) reconstruction. Such a population has
some given parameters of contained variables but a priori
unknown regression coefficients. All variables of this
population have linear relationships between themselves
and are normal. The last condition is optional.

From such a population one can draw samples of
any size. Very large samples from this population allow us
to estimate the regression coefficients in the population
with a priori given accuracy due to the unbiassedness and
consistency of OLS solutions. In turn, the knowing of the
population regression coefficients allows us to estimate the
biassedness of the new method (using very large samples)
and variances of its sample regression coefficients (using
multiple drawing of samples of the given size).

Consider the creation of the mentioned artificial
population. First, let us set a priori any regressand Y and
an auxiliary vector T =Y + a randn, where randn~N (0, 1)
is a standard normal vector of size Y taken from the
MATLAB pseudo-random generator and « is a constant
which a priori sets the near-collinearity level. Regressors
{X;} are constructed with the aid of the auxiliary vector T
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X; = k;T, where k; = tan(a;) and q; is the angle between
Y and X; vectors. With diminishing of a;, the mean
influence of X; on Y increases as the projection of a unit
increment along the trend and the correspondent regression
coefficient b; in the modelled population increases also.
For modelling stochastic regressors, the pseudo-random
function randn restarts for each replica.

This method makes it possible to create a population
in which all regression coefficients are the same, for
instance, or these ones are decreasing (increasing) in a
given manner, or these are having the given signs. These
issues allow one to test a new method for solving a linear
regression problem for adequacy.

The data simulated with this method have been
denoted as DSm(n, ), where m is the number of regressors,
n is the sample size and «a is the constant that sets the
near-collinearity level. This notation has been complemented
with angles {a;} which set the regression coefficient values
in the artificial population DSm(n, ).

Let us consider the artificial population DS5(n,0.01)
with the set of angles {a;}={5,5,40,60,80} for
demonstrating the stability and small biassedness of the
modified OLS (MOLS) method. With this set of angles
{a;}, the first two regression coefficients in the population
should be equal and much more in value than the others.
Other coefficients are descending in magnitude. All
coefficients have to be positive.

With the sample size (n) increasing, the MOLS
solution should approach in probability the OLS mean
solution if it is almost unbiassed. Exactly this issue is
shown in the Table for n = 10 000 for a single sample
solution. We also see that in population b; = b, and other
populations, the coefficients are decreasing in values. The
mean OLS solution can be taken as the estimates of the
population coefficients for = 100 000: b, = b, = 2.2860;
b; = 0.2386; b, = 0.1154; b5 = 0.0352. If we look at the
single MOLS solution forn = 10 in the Table, we can see
practically the same values for regression coefficients as
that for the OLS with n = 100 000. The same thing can be
seen for the ridge method (4 = 0.5), except for being a
bias.

Table
The OLS, MOLS and ridge solution means and their standard deviations via sample size n
under severe near-collinearity (&« = 0.01, VIF = 57107)
Method n b, b, b, bs b, bs
1 2 3 4 5 6 7 8
Single sample solutions

OoLS 10 -0.0099 5.9015 6.4643 -0.4212 -0.0539 0.0644
MOLS 10 -0.0124 2.2868 2.2910 0.2350 0.1153 0.0353
Ridge 10 1.3452 2.0815 2.0791 0.2168 0.1050 0.0320
OoLS 10 000 -0.0004 2.2853 2.2859 0.2428 0.1238 0.0346
MOLS 10 000 0.0002 2.2862 2.2859 0.2384 0.1155 0.0353
Ridge 10 000 1.3671 2.0785 2.0785 0.2167 0.1050 0.0321
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Table (the end)

1 ‘ 2 3 4 5 6 7 8
Mean regression coefficients (10* sample replicas)

OLS 10 0.0002 2.3190 2.3217 0.2346 0.1129 0.0356
MOLS 10 0.0008 2.2858 2.2859 0.2383 0.1155 0.0353
Ridge 10 1.3642 2.0781 2.0782 0.2167 0.1050 0.0321

oLs 10 000 0.0001 2.2860 2.2864 0.2386 0.1154 0.0352
MOLS 10 000 0.0007 2.2859 2.2859 0.2383 0.1155 0.0353
Ridge 10 000 1.3637 2.0782 2.0782 0.2167 0.1050 0.0321

Standard deviations of regression coefficients (10* sample replicas)

oLS 10 0.0202 2.7236 2.7046 0.2757 0.1384 0.0411
MOLS 10 0.0129 0.0043 0.0044 0.0005 0.0002 0.0002 0.0001
Ridge 10 0.0059 0.0039 0.0040 0.0004 0.0001

oLs 10 000 0.0011 0.0059 0.1455 0.1465 0.0152 0.0073 0.0022
MOLS 10 000 0.0059 0.0003 0.0003 0.0000 0.0000 0.0000 0.0000
Ridge 10 000 0.0003 0.0003 0.0000 0.0000

Solution' standard deviations for both MOLS and
ridge methods are equal and drastically smaller than
those of the OLS method. So, this comparison confirms
the stability and small bias of MOLS solutions, and
demonstrates a possibility of finding a correct solution to
the linear regression problem both for small and large
samples.

As for the ridge method, the author uses only one
value of the regularization constant, 1= 0.5, for all
calculations in this research, that gives the most stable
solution with a rather small bias as one can see in the
Table. More than that, as a rule of thumb, one can obtain
a practically unbiassed ridge solution with this A, if they
multiply all single sample ridge-solution components (except
for by) by the number 1.1. This can be seen in the Table if
we multiply the ridge solution by the value 1.1 for both
n = 10and n = 10 000. This rule has produced an excellent
result in all the investigations but it requires confirmation
on a larger database.

It is worth noting that the considered simulation
procedure also demonstrates the confidence intervals
diminishing for the MOLS method compared to the OLS
one. The significance of the sample regression coefficients
can be also verified by this simulation method with the aid
of z-test considering that the correspondent variances of
the sample regression coefficients are precisely known.

In general, the developed simulation method allows
comparing the common OLS with the new MOLS method
for demonstrating the advantages of the latter. Although
this simulation method is not intended for solving the linear
regression problem for some observed sample, it provides
an opportunity to verify any method for solving the linear
regression problem under multicollinearity.

With this simulation method in hand the author has
demonstrated almost complete unbiassedness of the
MOLS and its very small variability in solving linear
regression problems under near-collinearity of any level.

The mentioned simulation method (ADP) allows
demonstrating a high proximity of the MOLS solutions to
the solution in the population, which the author has
estimated as the OLS solution for a very large sample. As
one can see in the Table, a MOLS solution is very close to
the population solution even for a very small sample size.

In general, the ADP has made it possible to affirm
that the developed MOLS method gives an adequate
solution to the linear regression problem under near-
collinearity and multicollinearity.

Summarizing, the obtained results can be characterized
as follows. The notion of physically correct and physically
incorrect codomain of any non-singular matrix has been
introduced and with the aid of this notion the appearance
of economically incorrect OLS-solutions in the presence
of near-collinearity has been explained. It has been
clarified that the incorrectness of the OLS solutions is a
consequence of the exit of the OLS matrix equation’
RHS from the codomain of physical correctness due to
random errors in the data and great variability of the OLS
solutions.

The new method presented in the paper, that is the
MOLS, is based on the OLS matrix regularization, which
enlarges the codomain of physical correctness and then
diminishes the probability of the exit of the RHS from this
domain. More than that, the modified Cramer's formulas
give a more stable solution than the Gauss' method. Both
these factors lead to a more stable and economically
adequate solution of the MOLS than the OLS. Relatively to
the ridge method, the MOLS is practically unbiassed and
does not need optimization of the regularization constant.
These two advantages are decisive for practical
applications.

The shortcomings of the MOLS are the intensive
computer loading of the algorithm and possible OLS-like
behavior of the solution for the MOLS method, as well as
for the ridge regression method, in rare situations of a very
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large partial regression residual error of some regressors
with the regressand which is observed, for instance, in the
presence of non-linear regressors.
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