
Системи обробки інформації, 2014, випуск 2(118), том 2 ISSN 1681-7710

60
 I.O. Zolotareva, O.O. Knyga

UDC 004.942

I.O. Zolotareva, O.O. Knyga

Simon Kuznets Kharkiv National University of Economics, Kharkiv

MODERN JAVASCRIPT PROJECT OPTIMIZERS

This article is devoted to diffrent methods of minification of single JavaScript files, entire projects, and their

concatenation. It analyzes minificators JSMin, YUI Compressor, UglifyJS and compilators Google Closure and

Kjscompiler, describes their benefits and presents comparative descriptions.

Keywords: JavaScript, Kjscompiler, JSMin, YUI Compressor, UglifyJS, Google Closure, TypeScript,

ECMAScript, data compression, coding optimization, compilation, ECMAScript, minification, filters.

Introduction
JavaScript is one of the most popular dynamic

computer Netscape-developed object scripting

programming language used in millions of web pages and

server applications worldwide. Netscape's JavaScript is a

superset of the ECMA-262 Edition 3 (ECMAScript)

standard scripting language, with only mild differences

from the published standard. Virtually every personal

computer in the world has at least one JavaScript

interpreter installed on it and in active use. JavaScript's

popularity is due entirely to its role as the scripting

language of the WWW. It allow client-side scripts to

interact with the user, control the browser, communicate

asynchronously, and alter the document content that is

displayed [1]. It is also being used in server-side

programming, game development and the creation of

desktop and mobile applications. This language has strong

object-oriented programming capabilities, even though

some debates have taken place due to the differences in

object-oriented JavaScript compared to other languages.

While often derided as a toy, beneath its deceptive

simplicity lie some powerful language features, one that is

now used by an incredible number of high-profile

applications, showing that deeper knowledge of this

technology is an important skill for any web or mobile

developer [6]. JavaScript, like any other object oriented

programming languages, has types and operators, core

objects, and methods. Its syntax comes from the Java and

C languages, so many structures from those languages

apply to JavaScript as well. One of the key differences is

that JavaScript does not have classes (this will be fixed in

newer ECMAScript versions); instead, the class

functionality is accomplished by object prototypes. The

other main difference is that functions are objects, giving

functions the capacity to hold executable code and be

passed around like any other object.

Developers often see that JavaScript is prototype-

based language, but not object oriented. Prototype-based

programming is a style of object-oriented programming in

which classes are not present, and behavior reuse, known

as inheritance in class-based languages, is accomplished

through a process of decorating existing objects which

serve as prototypes. This model is also known as class-

less, prototype-oriented, or instance-based programming.

The original (and most canonical) example of a

prototype-based language is the programming language

Self developed by David Ungar and Randall Smith.

However, the class-less programming style has recently

grown increasingly popular, and has been adopted for

programming languages such as JavaScript, Cecil,

NewtonScript, Io, MOO, REBOL, Kevo, Squeak (when

using the Viewer framework to manipulate Morphic

components), and several others.

The application of JavaScript to use outside of web

pages – for example, in PDF documents, site-specific

browsers, and desktop widgets – is also significant.

Newer and faster JavaScript VMs and platforms built

upon them (notably Node.js) have also increased the

popularity of JavaScript for server-side web

applications. On the client side, JavaScript was

traditionally implemented as an interpreted language but

just-in-time compilation is now performed by recent

browsers.

Most of JavaScript’s features are common to all

conforming ECMAScript implementations, unless

explicitly specified otherwise.

JavaScript supports much of the structured

programming syntax from C (e.g., if statements, while

loops, switch statements, etc.). One partial exception is

scoping: C-style block scoping is not supported. Instead,

JavaScript has function scoping (although, block

scoping using the let keyword was added in JavaScript

1.7). Like C, JavaScript makes a distinction between

expressions and statements. One syntactic difference

from C is automatic semicolon insertion, which allows

the semicolons that would normally terminate

statements to be omitted [1]. According to the coding

conventions, it’s better to keep one entity per one file to

make structure more simple and understandable. In the

web it causes network problems, because to make

system ready to run it is necessary to download all

entity on what project depends just to the current

execution position.

As were mentioned before, it is important to keep

project ready for changes and easy to understand, so

developers should have a bunch of files with code. Each

file makes request to a server, that slow down page

loading speed. It would be great to download all content

that we need right now in a compressed form per one

request to a server. And fortunately, there are few solutions

that may help with minification: YUI Compressor, Google

Closure, JSMin, the Dojo compressor and Dean Edwards'

Інформаційні технології в технічних системах

61

Packer. Each of these tools, however, has drawbacks.

JSMIN, for example, does not yield optimal savings, due to

its simple algorithm, it must leave many line feed

characters in the code in order not to introduce any new

bugs.

According to Yahoo!'s Exceptional Performance

Team, 40% to 60% of Yahoo!'s users have an empty cache

experience and about 20% of all page views are done with

an empty cache. This fact outlines the importance of keeping

web pages as lightweight as possible. Improving the

engineering design of a page or a web application usually

yields the biggest savings and that should always be a

primary strategy. With the right design in place, there are

many secondary strategies for improving performance such

as minification of the code, HTTP compression, etc. [7].

The goal of JavaScript minification is always to

preserve the operational qualities of the code while

reducing its overall byte footprint (both in raw terms and

after gzipping, as most JavaScript and CSS served from

production web servers is gzipped as part of the HTTP

protocol). One more problem that we would face, it is

concatenation order. Structure of projects may be

extremely complex. Component could depend on another

component, which depends on another and so on… It

means that order of concatenation makes a huge difference.

We should always load independent components first and

depended on them components after. Purpose of the

article – to analyze existing JavaScript minification

tools, concatenation and compilation technics.

The main part

JSMin

JSMin is a filter which removes comments and

unnecessary whitespace from JavaScript files. It typically

reduces filesize by half, resulting in faster downloads. It

also encourages a more expressive programming style

because it eliminates the download cost of clean, literate

self-documentation. This does not change the behavior of

the program that it is minifying. The result may be harder

to debug. It will definitely be harder to read [4].

Libary first replaces carriage returns ('\r') with

linefeeds ('\n'). It replaces all other control characters

(including tab) with spaces. It replaces comments in the //

form with linefeeds. It replaces comments in the /* */ form

with spaces. All runs of spaces are replaced with a single

space. All runs of linefeeds are replaced with a single

linefeed. It omits spaces except when a space is preceded

and followed by a non-ASCII character or by an ASCII

letter or digit, or by one of these characters: \, $, _. It is

more conservative in omitting linefeeds, because linefeeds

are sometimes treated as semicolons. A linefeed is not

omitted if it precedes a non-ASCII character or an ASCII

letter or digit or one of these characters: \, $, _, {, [, (, +, -.

and if it follows a non-ASCII character or an ASCII letter

or digit or one of these characters: \, $, _, },],), +, -, ", '. No

other characters are omitted or modified. JSMin knows to

not modify quoted strings and regular expression literals. It

does not obfuscate, but it does uglify.

YUI Compressor

The YUI Compressor is a JavaScript compressor

which, in addition to removing comments and white-

spaces, obfuscates local variables using the smallest

possible variable name. This obfuscation is safe, even

when using constructs such as 'eval' or 'with' (although

the compression is not optimal is those cases) Compared

to jsmin, the average savings is around 20% [4].

The YUI Compressor is also able to safely

compress CSS files. The decision on which compressor

is being used is made on the file extension (js or css)

Compressor is JavaScript minifier designed to be 100%

safe and yield a higher compression ratio than most

other tools. Tests on the YUI Library have shown

savings of over 20% compared to JSMin (becoming

10% after HTTP compression). The YUI Compressor is

also able to compress CSS files by using a port of Isaac

Schlueter's regular-expression-based CSS minifier.

The YUI Compressor is written in Java and relies on

Rhino to tokenize the source JavaScript file. It starts by

analyzing the source JavaScript file to understand how it is

structured. It then prints out the token stream, omitting as

many white space characters as possible, and replacing all

local symbols by a 1 (or 2, or 3) letter symbol wherever such

a substitution is appropriate in the face of evil features such

as eval or with, the YUI Compressor takes a defensive

approach by not obfuscating any of the scopes containing the

evil statement. The CSS compression algorithm uses a set of

finely tuned regular expressions to compress the source CSS

file. The YUI Compressor is open-source, so don't hesitate to

look at the code to understand exactly how it works.

The YUI Compressor yielded exceptional results,

however it was missing one thing. Integration in to my

build and deployment process. In IdeaPipe I use a

MSBuild script to compile, manipulate, and prepare for

publishing. So naturally I built a MSBuild Task to

minimize my JavaScript and CSS files. So your should

write ant tasks or msbuild.

UglifyJS

This package implements a general-purpose

JavaScript parser, compressor, beautifier toolkit. It is

developed on NodeJS, but it should work on any

JavaScript platform supporting the CommonJS module

system. If platform of choice doesn’t support

CommonJS, developer can easily implement it, or

discard the exports.* lines from UglifyJS sources [7].

The tokenizer, parser generates an abstract syntax

tree from JS code. It can then traversed by the AST. The

second part of this package inspects and manipulates the

AST generated by the parser. It provides ability to re-

generate JavaScript code from the AST. Optionally

indented – you can use this if you want to “beautify” a

program that has been compressed, so that you can

inspect the source. But you can also run our code

generator to print out an AST without any whitespace,

so you achieve compression as well.

Another compression tool is shortification of

variable names, usually to single characters. UglifyJS's

mangler will analyze the code and generate proper

variable names, depending on scope and usage, and is

smart enough to deal with globals defined elsewhere, or

with eval calls or with statements. In short, if eval or

with are used in some scope, then all variables in that

scope and any variables in the parent scopes will remain

unmangled, and any references to such variables remain

Системи обробки інформації, 2014, випуск 2(118), том 2 ISSN 1681-7710

62

unmangled as well. Libary joins consecutive var

declarations, resolves simple constant expressions. We

only do the replacement if the result occupies less bytes;

for example 1/3 would translate to 0.333333333333, so in

this case we don’t replace it. It transforms consecutive

statements in blocks are merged into a sequence; in many

cases, this leaves blocks with a single statement, so then we

can remove the block brackets. UglifyJS removes some

unreachable code and warn about it (code that follows a

return, throw, break or continue statement, except

function/variable declarations). But it should be mentioned,

that current minifier has special feature that doesn’t relate

to minification: beautifier. The beautifier can be used as a

general purpose indentation tool. It’s useful when you want

to make a minified file readable. One limitation, though, is

that it discards all comments, so you don’t really want to

use it to reformat your code, unless you don’t have, or

don’t care about, comments. In fact it’s not the beautifier

who discards comments – they are dumped at the parsing

stage, when we build the initial AST. Comments don’t

really make sense in the AST, and while we could add

nodes for them, it would be inconvenient because we’d

have to add special rules to ignore them at all the

processing stages. UglifyJS package is used by default in

r.js compiler for compiling require.js projects, that

combines related scripts together into build layers and

minifies them. R.js also Optimizes CSS by inlining CSS

files referenced by @import and removing comments [6].

Google Closure Tools

Google Closure Tools is a set of tools to help

developers build rich web applications with JavaScript. It

was developed by Google for use in their web applications

such as Gmail, Google Docs and Google Maps [3]. The

Closure tools help developers to build rich web

applications with web development tools that are both

powerful and efficient. The Closure tools include.

Main module of Closure Compiler is JavaScript

minificator, that translates JavaScript code into compact,

high-performance code. The compiler removes dead code

and rewrites and minimizes what's left so that it downloads

and runs quickly. It also checks syntax, variable references,

and types, and warns about common JavaScript pitfalls.

These checks and optimizations help you write apps that

are less buggy and easier to maintain [9]. It also has a

comprehensive JavaScript library, that helps in developing

JavaScript project with huge trees of dependencies.

Developer can just pull what he needs from a large set of

reusable UI widgets and controls, and from lower-level

utilities for DOM manipulation, server communication,

animation, data structures, unit testing, rich-text editing,

and more. The Closure Library is server-agnostic, and is

intended for use with the Closure Compiler. Closure

Templates simplify the task of dynamically generating

HTML. They have a simple syntax that is natural for

programmers. In contrast to traditional templating systems,

in which you use one big template per page, you can think

of Closure Templates as small components. The Closure

Linter enforces the guidelines set by the Google JavaScript

Style Guide. The linter handles style issues so that

developer can focus on coding.

Closure Code optimizer supports different types of

optimization: ADVANCED_OPTIMIZATIONS,

SIMPLE_OPTIMIZATION and WHITESPACE_ONLY

mode.

Compilation with ADVANCED_OPTIMIZATIONS

achieves extra compression by being more aggressive in the

ways that it transforms code and renames symbols.

However, this more aggressive approach means that you

must take greater care when you use

ADVANCED_OPTIMIZATIONS to ensure that the output

code works the same way as the input code.

For today it is the most complete tool for JavaScript

developers. But to get all the features from Google Closure

tool developer should include one more dependency in the

code – Google Closure itself. Otherwise, it is not possible to

concatenate all files in the right order and to minify them in

the right way.

Kjscompiler

Kjscompiler makes compilation of multiple

JavaScript files with Google Closure Compiler

application in right order [11].

As were described in the block about Google

Closure Tools, googles solution has one disadvantage –

lack of the possibility to compile whole project without

including one more dependency in the code,

dependency on Google Closure Compiler. Why is it bad

solution? Despite additional functionality provided by

that tool, developers may give their preferences to

another libraries, to another solutions to create

connection between components, developers may do not

have any need of linter tool, they may have desire to

chose CommonJS or AMD ecosystem themselves.

Kjscompiler eliminates this disadvantage and

provides solution based on annotations. With another

words, Kjscompiler is some kind of wrapper around

Google Closure Compiler, because it includes it and

provides additional functionality.

This compiler compiles entire project directory,

that contains JavaScript files. It scans project and each

file, then creates chain of files for concatenation.

Task of computing optimal concatenation order of files

soles via algorithm, that represents each file as a vertex on a

graph and each dependency as edge. On a first step

algorithm sorts all edges with an order when edges with

lowest number of dependencies goes first. On the second

step we add edges to a ordered list. To do so, algorithm

scans each edge and adds it to a list only in a case if each of

its parents (dependencies) is already in the list or if there is

not parents for current edge. To deal with cycle

dependencies algorithm just adds edges after second step to

a ordered list according to ordered after sorting. With a

configuration file developer may specify compilation

settings, like level of compilation

(ADVANCED_OPTIMIZATIONS,

SIMPLE_OPTIMIZATION and WHITESPACE_ONLY),

regex pattern to select files, that should be concatenated and

compressed, basic directory and output file path.

Kjscompiler and TypeScript

TypeScript is a free and open source programming

language developed by Microsoft. It is a strict superset of

JavaScript, so any existing JavaScript programs are also

valid TypeScript programs [5]. TypeScript is designed for

development of large applications and compiles down to

JavaScript. TypeScript supports header files which can

Інформаційні технології в технічних системах

63

contain type information of existing JavaScript libraries,

enabling other programs to use objects defined in the header

files as if they were strongly typed TypeScript objects. There

are third-party header files for popular libraries like jQuery,

MongoDB, Node.js, and D3.js.

For today, there is no solution, that would compile

TypeScript project into the one minified file according to the

TypeScript file annotations. Another good thing about

Kjscompiler is that it can compile produced by TypeScript to

Javascript translator JavaScript files. Solution is not perfect,

because TypeScipt code requires additional annotations for

Kjscompiler, that would duplicate TypeScript references,

and that developer is obligated to use translator.

Conclusions

Minificaton is really important technic for a modern

web, because about 20 % of all page views are done with

and empty cache. his fact outlines the importance of

keeping web pages as lightweight as possible.

Concatenation represents one of the primary strategies of

reducing number of request on a server. Speed of the

project in the web relies on its optimality. And to build best

solution developer should always ask himself, does he can

do better. Concatenation of the files is the most obvious

way to reduce number of request on the server. This will be

effective for both, client and server sides. As we already

discussed servers benefits, let’s look at the client side.

Modern browsers have powerful caching technics that

reduces the latency of file loading. As a result, site is

loading faster. With concatenation we could skip

unnecessary file checking and reduce its number to one

file. Compilation, in the current context, is a technic that

does both concatenation and minification. Today we have

few solutions that may minify JavaScript code: YUI

Compressor, Google Closure, JSMin, the Dojo compressor

and Dean Edwards' Packer. In the current article we have

analyzed only first three of them. According to the test

done with compilation of jquery-1.6.2, Google Closure in

basic mode and UglifyJS give the best results: 61,15 %

compression for Google Closure and 61,11% compression

for UglifyJS. With the advanced mode the results of

Google Closure could be much better, but this mod could

only be used in the project context. Despite the 0,04 %

extra compression of Google Closure it is 5 times slower

than UglifyJS. Kjscompiler makes compilation of multiple

JavaScript files with Google Closure Compiler application

in right order, that removes Google Closure Compiler

disadvantage, based on need to include one more

dependency to the code, and provides solution based on

annotations. With another words, Kjscompiler is some kind

of wrapper around Google Closure Compiler, because it

includes it and provides additional functionality. With its

flexibility and annotation system it is the best solution for

modern project compilation. And only Kjscompiler among

described compilers could be used with the TypeScript.

References

1. Flanagan, David, Ferguson, Paula. JavaScript: The

Definitive Guide (5th ed.) // Flanagan, David, Ferguson,

Paula – O'Reilly & Associates, 2006. – 626 p.

2. Andres Hejlsberg. Typescript Language Specification

// Andres Hejlsberg. – Microsoft, 2012. – 143 p.

3. Bolin, Michael. Closure: The Definitive Guide //

Bolin, Michael. – O'Reilly Media Inc., 2010. – 331 p.

4. The JavaScript Minifier (Douglas Crockford)

[Electronic resource]. - Access to resources:

http://www.crockford.com/javascript/jsmin.html

5. Introduction to Object-Oriented JavaScript

[Electronic resource]. - Access to resources:

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Introduction_to_Object-

Oriented_JavaScript

6. A re-introduction to JavaScript [Electronic resource].

- Access to resources: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/A_re-introduction_to_JavaScript

7. YUI Compressor Introduction [Electronic resource]. -

Access to resources: http://yui.github.io/yuicompressor/

8. Requirejs optimizer [Electronic resource]. - Access to

resources: http://requirejs.org/docs/optimization.html

9. UglifyJS [Electronic resource]. - Access to resources:

https://github.com/mishoo/UglifyJS

10. Google developers guide: closure tools [Electronic

resource]. - Access to resources:

https://developers.google.com/closure/

11. Kjscompiler [Electronic resource]. - Access to

resources: https://github.com/knyga/kjscompiler

Reviewer: professor of the Department of Software

Engineering Shubin Igor, Kharkiv National University of

Radioelectronics

Author ZOLOTAREVA Irina

Kharkiv National University of Economics, professor, Ph.D.

E-mail – izolotaryova@gmail.com

Author KNYGA Oleksandr

Kharkiv National University of Economics. E-mail –

oleksandrknyga@gmail.com

СОВРЕМЕННАЯ ОПТИМИЗАЦИЯ ПРОЕКТОВ НА JAVASCRIPT

И.А. Золотарева, А.А. Книга

Данная статья посвящена различным способом минификации отдельных JavaScript файлов и целых проектов, а

также их конкатенацие. В статье рассмотрены минификаторы JSMin, YUI Compressor, UglifyJS и компиляторы

Google Closure и Kjscompiler, описаны их преимущества и приведены сравнительные характеристики.

Ключевые слова: JavaScript, Kjscompiler, JSMin, YUI Compressor, UglifyJS, Google Closure, TypeScript, ECMAScript,

сжатие данных, программирование, оптимизация, компиляция, ECMAScript, минификация, фильтры.

СУЧАСНА ОПТИМІЗАЦИЯ ПРОЕКТІВ НА JAVASCRIPT

І.О. Золотарьова, О.О. Книга

Дана стаття присвячена різним способом мініфікаціі окремих JavaScript файлів і цілих проектів, а також їх

конкатенації. У статті розглянуті мініфікатори JSMin, YUI Compressor, UglifyJS і компілятори Google Closure і

Kjscompiler, описані їх переваги і наведені порівняльні характеристики.

Ключові слова: JavaScript, Kjscompiler, JSMin, YUI Compressor, UglifyJS, Google Closure, TypeScript, ECMAScript,

стиснення даних, програмування, оптимізація, компіляція, ECMAScript, мініфікація, фільтри.

