Г.В. НОВИКОВ (канд. техн. наук) И.Е. ИВАНОВ (канд. техн. наук, доц.) С.А. ДИТИНЕНКО (канд. техн. наук, доц.)

Научный центр НТК "Эльбор", г. Харьков

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ФИНИШНОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЕТАЛЕЙ МАШИН

Введение

При механической обработке высокоточных деталей, особенно на операциях шлифования, постоянно возникают вопросы уменьшения упругих перемещений в технологической системе, которые в конечном итоге определяют точность обработки. Поэтому данным вопросам в научно-технической литературе уделяется большое внимание. Например, разработаны эффективные автоматизированные циклы круглого шлифования (включающие ускоренное врезание абразивного круга в обрабатываемый материал, этапы чернового и чистого шлифования, выхаживание), позволяющие исключить отрицательную роль упругих перемещений в формировании параметров точности и повысить производительность обработки [1]. Разработаны математические модели определения упругих перемещений и установлены условия их уменьшения [2, 3]. Однако, полученные решения справедливы для отдельных методов механической обработки, что не позволяет с единых позиций оценить истинные технологические возможности всего многообразия процессов резания лезвийными и абразивными инструментами с точки зрения повышения производительности и точности обработки. Поэтому важной и актуальной задачей является установление теоретического решения, связывающего производительность обработки и упругие перемещения в технологической системе и справедливого для различных методов механической обработки. Это позволит выявить, обосновать и реализовать условия повышения эффективности механической обработки, разработать новые методики проектирования и оптимизации структуры и параметров технологических процессов. Цель работы – повышение точности и производительности финишной механической обработки лезвийными и абразивными инструментами с учетом упругих перемещений в технологической системе.

Основное содержание работы

В основу решения положено известное дифференциальное уравнение интенсивности съема материала при продольном точении [4]:

$$\frac{dv}{d\tau} + M \cdot v = N \cdot \tau \,, \tag{1}$$

где
$$M = \frac{V_{pe3} \cdot K_{pe3} \cdot c}{\pi \cdot D_{\partial em} \cdot l_{\partial em} \cdot \sigma}$$
; $N = \frac{V_{pe3}^2 \cdot K_{pe3} \cdot c \cdot t}{\pi \cdot D_{\partial em} \cdot \sigma}$; $v -$ объем снятого материала, м³; $\tau -$

время обработки, c; V_{pes} — скорость резания, м/c; $K_{pes} = P_z / P_y$; P_z , P_y — тангенциальная и радиальная составляющие силы резания, H; σ — условное напряжение резания, H/м²; c — жесткость технологической системы, H/м; $D_{\partial em}$ — диаметр детали, м; $l_{\partial em}$ — длина хода при продольном точении, м; t — глубина резания, м.

В результате решения уравнения (1) получены зависимости для определения производительности обработки Q, величины упругого перемещения y и $P_y = c \cdot y$:

$$Q = Q_0 - \left(Q_0 - \frac{y_0 \cdot V_{pe3} \cdot K_{pe3} \cdot c}{\sigma}\right) \cdot e^{\left(-\overline{\beta} \cdot \tau\right)},\tag{2}$$

$$y = y_{HOM} - (y_{HOM} - y_0) \cdot e^{(-\overline{\beta} \cdot \tau)}, \tag{3}$$

$$P_{v} = c \cdot y_{HOM} - c \cdot (y_{HOM} - y_{0}) \cdot e^{\left(-\overline{\beta} \cdot \tau\right)}, \tag{4}$$

где $Q_0 = t \cdot S_{npo\partial} \cdot V_{pes}$ — номинальная производительность обработки при продольном точении, м³/c; $S_{npo\partial}$ — продольная подача на оборот детали, м/об; y_0 — начальный натяг в

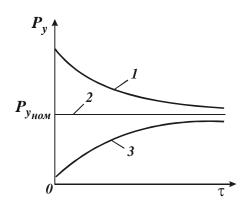


Рис. 1. Зависимость P_y от τ : $1 - P_{y_0} > P_{y_{HOM}} (y_0 > y_{HOM});$ $2 - P_{y_0} = P_{y_{HOM}} (y_0 = y_{HOM});$ $3 - P_{y_0} < P_{y_{HOM}} (y_0 < y_{HOM}).$

технологической системе, м; $y_{\text{ном}} = \frac{\sigma \cdot Q_0}{V_{\textit{pes}} \cdot K_{\textit{pes}} \cdot c}$ и

$$\overline{\beta} = \frac{V_{pe3} \cdot K_{pe3} \cdot c}{\pi \cdot D_{\partial em} \cdot l_{\partial em} \cdot \sigma}.$$

Как следует из рис. 1, построенного на основе зависимости (4), характер изменения параметров P_y (соответственно Q, y) с течением времени обработки τ может быть самым разнообразным. Все зависит от соотношения параметров y_{HOM} и y_0 . При условии $y_{HOM} > y_0$ параметр P_y (соответственно Q, y) увеличиваются во времени, асимптотически приближаясь соответственно к значениям: $P_{y_{HOM}}$, Q_0 , y_{HOM} . При условии $y_{HOM} = y_0$ параметры P_y , Q и y остаются неизменными с течением времени обработки и принимают соответственно значения $P_{y_{HOM}}$, Q_0 ,

 $y_{\text{ном}}$. При условии $y_{\text{ном}} < y_0$ параметры P_y , Q и y уменьшаются с течением времени обработки, асимптотически приближаясь соответственно к значениям $P_{y_{\text{ном}}}$, Q_0 , $y_{\text{ном}}$. Полученное решение носит общий характер и может быть применено не только для продольного точения, но и продольного шлифования, а также других методов лезвийной и абразивной обработки. Исходя из этого, применяемые на практике схемы механической обработки можно классифицировать по признаку изменения радиальной составляющей силы резания P_v во времени:

- 1) схемы, характеризующиеся увеличением P_y с течением времени обработки (основанные на жесткой схеме обработки);
- 2) схемы, характеризующиеся постоянством P_y с течением времени обработки (основанные на упругой схеме обработки с фиксированным радиальным усилием);
- 3) схемы, характеризующиеся уменьшением P_y во времени обработки (основанные на упругой схеме обработки с начальным натягом в технологической системе).

Случай 1 реализуется на практике при механической обработке как лезвийными, так и абразивными инструментами, а случаи 2 и 3 — при механической обработке абразивными инструментами (так называемые упругие схемы шлифования и доводки, а также схема выхаживания — обработка с отключенной радиальной подачей станка).

Из зависимости (4) следует, что добиться существенного уменьшения параметра y (повышения точности обработки) можно за счет выполнения условия $y_0 > y_{ном} = 0$, т.е. производя обработку по упругой схеме с начальным натягом в технологической системе y_0 . При этом (рис. 1) обеспечивается наибольшая производительность обработки Q. Причем, с увеличением величины y_0 производительность обработки Q увеличивается.

Очевидно, чем выше режущая способность инструмента (больше K_{pes} и меньше условное напряжение резания σ), тем больше величина y_0 и Q.

Учитывая сложность анализа приведенных зависимостей, в связи с наличием в них экспоненциальной функции, получим упрощенное решение уравнения (1). В первом приближении примем $v = Q \cdot \tau$ и $\frac{dv}{d\tau} = Q$. Это позволяет перейти от дифференциального уравнения (1) к простому линейному алгебраическому уравнению:

$$Q + M \cdot Q \cdot \tau = N \cdot \tau . \tag{5}$$

Его решение:

$$Q = \frac{N}{\left(\frac{1}{\tau} + M\right)}.$$
(6)

Зная Q, несложно определить параметры y и P_y . Применительно к схеме шлифования прямолинейного образца, движущегося по нормали к рабочей поверхности круга, радиальная составляющая силы резания $P_v = c \cdot y$ может быть выражена

$$P_{y} = P_{y_{HOM}} \cdot \frac{\left(1 + \frac{P_{y_{0}}}{Q_{0} \cdot c} \cdot \frac{F}{\tau}\right)}{\left(1 + \frac{P_{y_{HOM}}}{Q_{0} \cdot c} \cdot \frac{F}{\tau}\right)},$$
(7)

где $P_{y_0} = c \cdot y_0$; $P_{y_{nom}} = c \cdot y_{0_{nom}}$; F – площадь поперечного сечения образца, м 2 .

Характер изменения P_y с течением времени обработки τ для различных соотношений параметров P_{y_0} и $P_{y_{HOM}}$ (а также соотношений параметров y_0 и y_{HOM}) соответствует графикам, показанным на рис. 1, откуда можно сделать следующие выводы:

- 1. При обработке по жесткой схеме ($Q_0 = const$) радиальная составляющая силы резания P_y с течением времени обработки будет увеличиваться или в самом лучшем случае оставаться постоянной в зависимости от характера изменения отношения K_{pes}/σ . Поэтому, жесткую схему шлифования следует рассматривать как схему с увеличивающейся во времени радиальной составляющей силы резания P_y и соответственно величиной упругого перемещения y.
- 2. Схему выхаживания при шлифовании в связи с уменьшением во времени производительности обработки следует рассматривать как схему с уменьшающимися во времени параметрами P_y и y.

Как показано выше, все возможные схемы обработки можно классифицировать по характеру изменения во времени параметров P_y и y:1) схемы, характеризующиеся увеличением во времени параметров P_y и y (для $P_{y_0} < P_{y_{nom}}; y_0 < y_{nom}$); 2) схемы, характеризующиеся постоянством во времени параметров P_y и y (для $P_{y_0} = P_{y_{nom}}; y_0 = y_{nom}$); 3) схемы, характеризующиеся уменьшением во времени параметров P_y и y

(для $P_{y_0} > P_{y_{HOM}}$; $y_0 > y_{HOM}$).

Для первой схемы зависимость (7) с учетом P_{y_0} =0 принимает вид

$$P_{y} = \frac{P_{y_{HOM}}}{\left(1 + \frac{P_{y_{HOM}}}{Q_{0} \cdot c} \cdot \frac{F}{\tau}\right)}.$$
 (8)

Для второй схемы зависимость (7) с учетом $P_{y} = P_{y_{HOM}}$ принимает вид

$$P_{y_0} = \frac{\sigma \cdot Q_0}{K_{peg} \cdot V} \,. \tag{9}$$

Реализовать условие $y = y_0$ целесообразно за счет применения упругой схемы обработки с фиксированным радиальным усилием P_{y_0} . Проанализируем технологические возможности данной схемы, используя зависимость (9).

С течением времени обработки по мере снижения режущей способности инструмента отношение σ/K_{pes} будет увеличиваться. При условии $P_{y_0} = c \cdot y_0 = const$ это приведет к уменьшению производительности обработки. Следовательно, в зависимости (9) вместо номинальной производительности Q_0 необходимо рассматривать фактическую производительность, которая, исходя из зависимости (9), выразится

$$Q_{\phi} = \frac{K_{pes}}{\sigma} \cdot V \cdot P_{y_0}. \tag{10}$$

Для того чтобы стабилизировать величину Q_{ϕ} на определенном уровне, например, на уровне $Q_{\phi}=Q_0$ в связи с затуплением инструмента и уменьшением отношения K_{pe3}/σ , исходя из зависимости (10), необходимо увеличить скорость резания V при условии $P_{y_0}=c\cdot y_0=const$. Однако, более эффективным путем следует рассматривать стабилизацию во времени отношения K_{pe3}/σ , что достигается при лезвийной и абразивной (алмазно-абразивной) обработке различными методами. С точки зрения обеспечения параметров точности и качества обработки более эффективно применение третьей схемы обработки, характеризующейся уменьшением во времени параметров P_y и y_0 , т.е. схемы выхаживания. Первоначально рассмотрим схему шлифования с увеличивающимися во времени параметрами P_y и y при условиях: $y_0=0$; $P_{y_0}=0$. Тогда

$$y = \frac{y_{HOM}}{\left(1 + y_{HOM} \cdot \frac{F}{Q \cdot \tau}\right)}.$$
 (11)

Отношение Q/F равно скорости радиальной подачи V_{ϕ} . Тогда произведение V_{ϕ} и времени обработки τ будет определять величину снятого припуска Π_{max} , т.е. $\Pi_{max} = V_{\phi} \cdot \tau = Q \cdot \tau / F$. Преобразуем зависимость (11) с учетом данного выражения

$$y = \frac{\Pi_{max}}{\left(1 + \frac{\Pi_{max}}{y_{HOM}}\right)}.$$
 (12)

Как следует из зависимости (12), величина упругого перемещения y (определяющая точность размера обрабатываемой детали) тем меньше, чем меньше параметры y_{HOM} и Π_{max} . Получим зависимости для определения точности формы обрабатываемой цилиндрической детали. С физической точки зрения она обусловлена неравномерностью снимаемого припуска (погрешностью формы обработки на предшествующей операции). Предположим, что наибольший снимаемый припуск равен Π_{max} , а наименьший — Π_{min} . Тогда разность припусков $\Delta\Pi = \Pi_{max} - \Pi_{min}$ будет определять погрешность формы исходной цилиндрической заготовки. Погрешность формы обрабатываемой детали получим как разность величин упругих перемещений, возникающих в моменты обработки участков цилиндрической детали с наибольшим Π_{max} и наименьшим Π_{min} припусками. Тогда, с учетом зависимости (12), погрешность формы обрабатываемой детали (обозначим её как Δy) определится:

$$\Delta y = y_{max} - y_{min} = \frac{\Delta \Pi}{\left(1 + \frac{\Pi_{max}}{y_{HOM}}\right) \cdot \left(1 + \frac{\Pi_{min}}{y_{HOM}}\right)}.$$
 (13)

В результате пришли к довольно сложной по структуре зависимости, в которой параметры Π_{max} и Π_{min} входят как в числитель, так и в знаменатель. С одной стороны, точность формы обрабатываемой цилиндрической детали (определяемой параметром Δy) связана линейной зависимостью с параметром $\Delta \Pi$, который определяет точность формы исходной цилиндрической заготовки. С другой стороны, входящие в знаменатель зависимости параметры Π_{max} и Π_{min} приводят к уменьшению Δy .

При выполнении условий Π_{max} , $\Pi_{min} > y_{HOM}$ зависимость (13) упростится

$$\Delta y = \frac{y_{HOM}^2 \cdot \Delta \Pi}{\Pi_{max} \cdot \Pi_{min}} = y_{HOM}^2 \cdot \left(\frac{1}{\Pi_{min}} - \frac{1}{\Pi_{max}}\right). \tag{14}$$

В данном случае на параметр Δy существенное влияние оказывает величина y_{HOM} . Однако, основное влияние на Δy оказывает разность параметров Π_{max} и Π_{min} , т.е. параметр $\Delta \Pi$. Чем он меньше, тем меньше параметр Δy и меньше погрешность формы обрабатываемой детали. Пользуясь классическими имкиткноп технологии машиностроения, отношение параметров *∆П* и Δy определяет уточнение ε . Аналитическая зависимость для его определения с учетом зависимости (13) принимает вид

$$\varepsilon = \frac{\Delta \Pi}{\Delta y} = \left(1 + \frac{\Pi_{max}}{y_{hom}}\right) \cdot \left(1 + \frac{\Pi_{min}}{y_{hom}}\right). \tag{15}$$

Уточнение ε тем больше, чем больше Π_{max} , Π_{min} и меньше y_{hom} . При выполнении условий Π_{max} , $\Pi_{min} > y_{hom}$ с учетом зависимости (15) уточнение ε равно

$$\varepsilon = \frac{\Delta \Pi}{\Delta y} = \frac{\Pi_{max} \cdot \Pi_{min}}{y_{Hom}^2} \,. \tag{16}$$

Из данной зависимости следует вполне однозначная связь между параметрами ε и y_{HOM} , Π_{max} , Π_{min} . Если $\Pi_{max}=\Pi_{min}=\Pi$, то зависимость (16) упрощается

$$\varepsilon = \left(\frac{\Pi}{y_{HOM}}\right)^2. \tag{17}$$

Из зависимости (17) вытекает, что уточнение ε связано с соотношением Π/y_{hom} квадратичной зависимостью. Из курса технологии машиностроения известно, что величина, обратная уточнению ε , называется коэффициентом уменьшения погрешности и обозначается как K_v . Тогда K_v с учетом зависимости (15) примет вид

$$K_{y} = \frac{1}{\varepsilon} = \frac{\Delta y}{\Delta \Pi} = \frac{1}{\left(1 + \frac{\Pi_{max}}{y_{HOM}}\right) \cdot \left(1 + \frac{\Pi_{min}}{y_{HOM}}\right)}.$$
 (18)

Как видно, коэффициент уменьшения погрешности K_y тем меньше, чем больше параметры Π_{max} , Π_{min} и меньше величина y_{hom} . Таким образом, получены аналитические зависимости для определения двух важнейших параметров технологии машиностроения — коэффициента уменьшения погрешности K_y и уточнения ε . Они справедливы для различных методов механической обработки, а их использование открывает новые возможности анализа и прогнозирования путей повышения точности и производительности механической обработки.

Выводы

Получены аналитические зависимости для определения основных параметров точности обработки, обусловленных возникающими в технологической системе упругими перемещениями. Показана возможность классификации всего многообразия схем кинематических механической обработки (лезвийными абразивными инструментами) по признаку изменения (увеличения, уменьшения или постоянства) радиального усилия (радиальной составляющей силы резания) с течением времени обработки. Определены основные условия повышения точности и производительности обработки, состоящие в повышении режущей способности инструментов и применении упругой схемы обработки (шлифования) с начальным натягом в технологической системе.

Список литературы

- 1. Лурье Г.Б. Прогрессивные методы круглого наружного шлифования / Г.Б. Лурье. Л.: Машиностроение, 1984. 103 с. **Библиогр.: с. 102 (7 названий)**.
- 2. Тверской М.М. Автоматическое управление режимами обработки деталей на станках / М.М. Тверской. М.: Машиностроение, 1982. 208 с. *Библиогр.: с. 205-207 (55 названий)*.
- 3. Физико-математическая теория процессов обработки материалов и технологии машиностроения: *в* 10 *т*. / под общ. ред. Новикова Ф. В. и Якимова А. В. Одесса: ОНПУ, 2002. ISBN 966-7810-33-X. Т. 1: Механика резания материалов. 2002. 580 с. *Библиогр.: с.* 555–573. ISBN 966-7810-34-8 (в пер.).

4. Физико-математическая теория процессов обработки материалов и технологии машиностроения: *в 10 т.* / под общ. ред. Новикова Ф. В. и Якимова А. В. – Одесса: ОНПУ, 2002. – ISBN 966-7810-33-X. Т. 10: Концепции развития технологии машиностроения. – 2005. – 565 с. – *Библиогр.: с. 499-524*. – ISBN 966-7810-64-X (в пер.).

Надійшла до редакції 17.02.2012