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Abstract — The aim of this brief 

communication is to  shown that decision 

on just such attributes 
iX L  or 

iX L  is 

much less effective than using the values 

iX  in their entirety to estimate the 

underlying normal population and from 

that get a better idea about p  for much 

smaller sample size. 
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Quality control deal with variables 

acceptance sampling plans (VASP). In a 

VASP the quality of items in a given sample 

is measured on a quantitative scale. An item is 

judged defective when its measured quality 

exceeds a certain threshold. The samples are 

drawn randomly from population of items. 

The objective is to make inferences about the 

proportions of defectives in the population. 

This leads either to an acceptance or a 

rejection of population quality as a whole.  

In various applications the term 

“population” can have different meanings. It 

represents that collective of items from which 

the sample is drawn. Thus it could be a 

shipment, a lot of a batch of any other 

collective entity. Ultimately, any batch, lot or 

shipment is comprised of items that come 

from a certain process. If that process were to 

run indefinitely it would produce an infinite 

population of such items.  

Thus the sampled items from the batch, lot 

or shipment could be considered as a sample 

from that larger conceptual population. 

Clearly, if the sample indicates that something 

is wrong the producer would presumably 

adjust the process appropriately. 

Speaking about a VASP it is usually 

assumes that measurements  
1,..., nX X  for a 

random sample of n  items from a population 

are available and that defectiveness for any 

given sample item i  is equivalent to ,iX L  

where L  is some given lower specification 

limit (see, for example, [1]). Assume that we 

deal with a random sample from a normal 

population with mean   and standard 

deviation .  The following note will be it 

terms of a lower specification limit .L  Put 

,( , , ) ( ) ,
L

p p L P X L Ф 
 


      

 
which represents the probability that a given 

individual item in the population will be 

defective. Here ( )Ф x  denotes the normal 

distribution function, and p  can be 

interpreted as the proportion of defective 

items in the population. It is in the consumer’s 
interest to keep the probability p  or 

proportion p  of defective items in the 

population below a tolerable value 
1.p  The 

producer will try to keep p  only so low as to 

remain cost effective. Hence the producer will 

aim for keeping 
0,p p  where 

0p  typically 

is somewhat smaller than 
1,p  in order to 

provide a sufficient margin between producer 

and consumer interest. 

The consumer’s demand that 1p p  does 

not specify how that has to be accomplished 

in terms of   and .  The producer can 

control 1p p by either increasing   

sufficiently or by reducing ,  provided 

.L   Reducing   is usually more difficult 

since various sources of variation have to be 

controlled more tightly. Increasing   is 
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mainly in some way and is usually easier to 

accomplish. For normal data the standard 

VASP consist in computing X  (sampling 

mean) and S  (standard deviation) from the 

obtained sample of n  items and in comparing 

X kS  with L  for an appropriately chosen 

constant .k  If ,X kS L   then the consumer 

accepts the population from which the sample 

was drawn and otherwise it is rejected. 

    Note that rejection or acceptance is not 

based on the sample proportion of items with 

.iX L  Such classification would ignore how 

far above or below L  each measurement 
iX  

is. Basing decision on just such attributes 

iX L  or 
iX L  is much less effective than 

using the values 
iX  in their entirety to 

estimate the underlying normal population 

and from that get a better idea about p  for 

much smaller sample size. Attribute data 

should only be used when the direct 

measurements are not available or not 

feasible. In that case one needs to employ 

attribute sampling plans based on the 

binomial distribution, requiring typically 

much higher sample size. 

Before discussing the choice of k  in the 

acceptance criterion ,X kS L   it is approp-

riate to define the two notions of risk for such 

a VASP. Due to the random nature of the 

sample there is some chance that the sample 

misrepresents the population at least to some 

extent and thus may induce us to take 

incorrect action. The consumer’s risk is 
probability of accepting the population when 

in fact the proportion p  of defectives in 

population is greater than the acceptable limit 

1.p  The producer’s risk is the probabilitв of 
rejecting the population when in fact the 

proportion p  of defectives in the population 

is less or equal 0.p   

In [2] turns out that the probability of 

acceptance for a given VASP can be 

expressed in terms of test statistic as follows: 

, ( )P X kS L      

,

( ) ( )n X n L S
P k n 

 
  
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     

 
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where 

1( )
( ) ( ) .p

n L
p nФ p nz




      (1) 

According to [1] the non-centrality parameter 

( )p  is a decreasing function of p , from [2] 

the operating characteristic curve of the 

VASP in given case 1, ( )( ) 1 ( )n pp G k n    

is decreasing in p  too.  

The consumer’s risk consist of the chance 
of accepting the population when in fact 

1.p p  In order to control the consumer’s 
risk ( )p  has to be kept at some sufficiently 

small level   for 
1.p p  Since ( )p is 

decreasing in p  we need only insure 

1( )p   by proper choice of .k  The factor 

k  is then found by solving the equation 

11, ( )1 ( ),n pG k n    from which 

1

1

1, ( )(1 ) / .n pk G n 
               (2) 

The probability of rejecting the population 

is 1 ( ),p  which is maximal over 
0p p  at 

0.p  Hence the producer would want to limit 

this maximal risk 
01 ( )p  by some value 

, customarily chosen to be 0.05. Note that 

0   and 0   must satisfy the constraint 

1.    Thus the producer is interested in 

ensuring that 

00 1, ( )1 ( ) ( )n pp G k n                    (3) 

Solving (3) for ,k  we will typically lead to 

a different value that obtained in (2). This 

conflict to having two different values of ,k  

depending on whose interest is being served, 

can be resolved by leaving the sample size n  

flexible so that there are two control 
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parameters, n  and ,k which can be used to 

satisfy the two conflicting goals. One slight 

problem is that n  is an integer and so it may 

not be possible to satisfy both equations (2) 

and (3) exactly. 

What one can do instead the following: for 

a given value n  find ( )k k n  to solve (2). If 

that ( )k n  also yields 
01, ( )( ( ) ),n pG k n n                           

then this sample size n  was possibly chosen 

too high and a lower value of n  should be 

tried. If we have 
01, ( )( ( ) ),n pG k n n  then 

n  was definitely chosen too small and a 

larger value of n  should be tried next. 

Through iteration one can arrive at the 

smallest sample size n  such that ( )k n  and n  

satisfy both (2) and (3). This iteration process 

will lead to a solution provided 
0 1.p p  If 

0p  

and 
1p  are too close to each other, vary large 

sample sizes will be required.  

In the case of an upper specification limit 

U  we accept the lot of population whenever 

.X kS U   Just by rewriting X U  as 

X X U L      we have the previous case:

,X kS U X kS U X kS L         
here S S  , then ( ) ( ).p P X U P X L      

The same k  and n  as before suffice as 

solution as long as we identify ( )p P X U   

with ( ),p P X L   i.e., specify only this risk 

p  of a population item being defective. Point 

out that the VASP does not say how the 

producer accomplishes the value 
0.p p  This 

is usually based on extensive testing of the 

producer’s broad eбperience. Also, the 
consumer cannot set 1p  arbitrarily low.  

In order to understand the effect on the 

required sample size when all requirements 

are kept at the same levels. Let us compare 

the previously discussed here (the VASP) 

with a corresponding attributes acceptance 

sampling plan (AASP). As you known in the 

AASP the number X  of defective items is 

counted and the population is accepted when 

,X k  where k  and the smallest sample size 

n  are determined such that for given 
0 1p p  

and 0,   0   with 1    we have  

1
( )pP X k   , 

0
( ) 1pP X k    .         

In finding n  we start out with an n  

suggested by the normal approximation to X  

(with continuity correction) 

0.5
( ) .

(1 )
p

k np
P X k Ф

np p

  
     

  

The requirements lead to the required sample 

size needed for appropriate quality control, in 

[2] rounded up to the next integer: 

2

1 1 0 0

0 1

(1 ) (1 )z np p z np p
n

p p

 
   

    
, 

where 
1( )z Ф  , 1( )z Ф   as defined 

in formula (1). 

To sum up, let us compare the calculations. 

If 0 10.05, 0.1, 0.01, 0.05p p     , then 

for the VASP we had 55n   whereas for the 

AASP 132n  , which is considerably higher. 

Thus, we can conclude that required sample 

size in VASP much less than in AASP when 

all requirements are kept at the same levels. 

Emphasize also that in VASP the search for 

the minimal sample size n  does not involve 

,L    and .  
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