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A dynamic theory of the amplitude dependent dislocation hysteresis is developed, emphasising 
the importance of the quasi-particle-dislocation interaction for the non-linear response of the real 
crystal to  the high-frequency -ultrasonic wave propagation. A strong frequency dependence of 
the sound attenuation rate is predicted, with a characteristic maximum near the transition from 
the dynamic to  the static hysteresis. In  the latter case the transition to  the limit gives the basic 
results of the Granato-Liicke and Eogers theories describing the amplitude dependent internal 
friction due to  underdamped dislocation loops. The dynamic theory of the dislocation hysteresis 
provides an explanation to  the anomaly shown by the high-frequency, amplitude dependent 
internal friction of metals a t the N-S transition. As is seen from the analysis, it is directly related 
to  the decrease in the S-state of the electron drag to dislocation.

Eine dynamische Theorie der amplitudenabhangigen Versetzungshysteresis wird entwickelt und 
au f die Bedeutung der Quasiteilchen-Versetzungs-Wechselwirkung fiir die nichtlmeare Response 
des Realkristalls.auf eine hochfrequente Ultraschallausbreitung hingewiesen. Eine strenge Fre- 
quenzabhangigkeit der Schalldampfungsrate wird vorausgesagt m it einem charakteristischen 
Maximum in der Nahe des Ubergangs von der dynamischen zur statischen Hysteresis. Im  letzteren 
Fallc ergibt der Grenziibergang die grundlegenden Ergebnisse der Granato-Liicke- und Rogers- 
Theorien, die die amplitudenabhangige innere Reibung infolge von unterdampften Versetzungs- 
schleifen beschreiben. Die dynamische Theorie der Versetzungshysteresis liefert eine Erklarung 
der Anomalie, die sich in der hoehfrequenten, amplitudenabhangigen inneren Reibung der Metalle 
zum N-S-t)bergang zeigt. Aus der Analyse ist ersichtlich, daB sie direkt m it dem Abfall des S- 
Zustands des Elektronendrags zu Versetzungen verbunden ist.

1. Introduction
Many properties of real crystal are determined by the interaction of dislocations with 
point defects. In particular, it is responsible for the hysteresis nature of the stress- 
strain relation resulting in an amplitude dependence of internal friction. The pheno­
menon was analysed by Granato and Lucke [1]. Rogers [2] extended the theory to 
high stress amplitudes and analysed the amplitude dependence of dynamical losses. 
Later on, several attempts were made of including into the analysis the thermally 
activated nature of obstacle surmounting by dislocations [3 to 7]. However, one of 
the most significant aspects of the dislocation-pinning centre interaction under 
alternating stress was not considered. The point is that the theory [1 at 7] was devel­
oped for the underdamped motion of dislocation. In the case of an overdamped 
motion the physical situation would be far more complex, e.g., the condition deter­
mining unpinning of a dislocation segment pair fx-om their common pinning centre
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would depend upon viscosity. This would result in a different value of the unpinning 
stress [8, 9] and also influence the number of loops to be unpinned at a given external 
stress level. Hence, the instantaneous distribution function of loop lengths should be 
dependent on the amount of damping. Besides, the presence of viscosity might give 
rise to such a performance that unpinning of dislocations from their pinning centre 
would not be “catastrophic”. In other words, unpinning of a dislocation from one 
centre would not provoke spreading of the break-away along the entire loop length L w  

However, the main role of viscosity in the amplitude dependent region consists 
of its direct effect upon the so-called hysteresis losses. In the ultimate account the 
latter are also due to interaction between the elastic fields of mobile dislocations and 
various quasi-particles in the crystal. Prior analyses of these losses all ignored the 
fact that the quasi-particles interact with dislocations, hence produce a dynamic 
drag force [9 to 11] and exert influence on the dislocation hysteresis. With an increase 
in the vibration frequency the amount of that influence can grow to such an extent 
as to alter the very nature of the hysteresis. As will be shown below, the amplitude 
dependent losses are mainly controlled, in the case of overdamped dislocation motion, 
by the dissipation of energy during viscous motion of the dislocation loops L s . They 
are inversely proportional to the forced vibration frequency со and the dislocation 
drag constant B.  There are possibilities for explaining quite a number of other effects 
manifesting themselves in the amplitude dependent region at high frequencies as a 
result of the strong influence of viscosity upon the dynamics of dislocations. This 
allows, in particular, the increase in the dislocation amplitude dependent internal 
friction of metals observed at the N-S transition [12 , 13] to be related to a decrease 
in electron viscosity.

2. Effect of Viscosity on Forced Vibrations of a Pinned Dislocation
Analysis of forced vibrations of a pinned dislocation in a viscous environment is one 
of the necessary elements of a consistent dynamic theory of the dislocations amplitude 
dependent hysteresis. The problem can be most simply formulated in the framework 
of the string model where the equation of dislocation motion under the action of an 
external stress er0 sin cot has the form

n o  r\ r \ n

M  —  U{x, t) +  В  — U{x, t) — О U(x,  t) =  ba0 sin (со, t) . (1)

Here M  and G denote the linear density of the dislocation effective mass and the 
linear tension constant, respectively, U(x,  t) is the displacement from the equilibrium 
position, and b the value of the Burgers vector. The solution of (1) representing forced 
vibrations of a dislocation segment of length L  fixed at the ends xx =  —L j 2 and 
%2 =  L j 2 to point defects can be written in closed form, viz.

U(x,  f) =  —  Im ш  cos xx  — cos к L j 2
(2 )x2 cos н L j 2

where x 2 =  (М/С)  со (со — iy)  and у  =  B j M .  Starting from this equation we will 
analyse the effect of viscosity on the angle 99(f) formed by the tangent to the dis­
location line at one of the pinning points and the straight line connecting these parts. 
Taking the derivative of TJ(x, t) with respect to x  at x  =  —i / 2  we find

botan cp(t) =  Im (j
tan к L j20'tWli (3 )

Despite the apparent simplicity of this formula it leads to a rather cumbersome 
equation for the “angle of attack” tangent, cp(t) (cf. [14]). Therefore, it seems reason-
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able to make use of the smallness of a> compared with y.  Note that because of the 
electron viscosity alone, у  of normal metals, y n, reaches values of the order Ю10 to 
1011 s_1 [9]. In the superconducting state у  (=  ys) decreases sharply at lower T  
following the formula [9]

2
Уп- exp [&(T) /T]  ’ (4)

where Д {T)  is the energy gap of the superconductor. However, even at rather low T,  
e.g. T  == 0.25Уc ( T c being the critical temperature of the superconductor) the values 
assumed by y s are still high as compared with со generally employed (w 107 to 10s s-1). 
In addition, it should be borne in mind that (4) is only valid for low velocities of the 
dislocation elements, viz. V Tjhqm', A{T)/hqm where qm is the characteristic size 
of a Brillouin cell [9]. It cannot be excluded, however, that in more general cases 
these velocities can reach or even exceed, during some parts of the vibration period, 
the critical value V c =  2A(T)/ ftqm marking the break of Cooper pairs. Since this 
leads to an increase of the drag force, the situation is even more favourable for the 
inequality со < ^ y  to hold.2) We will consider only small values of cp, otherwise the 
dislocation pinning condition cannot be given any physical meaning with typical 
values of the dislocation-point defect bonding force. Using (3) we can write

<p(t) =  <p0 sin (cot — Ф) (5 )

where the amplitude of the “angle of attack” and its phase shift with respect to the 
external stress are given by

i =  9>d

cosh )/2 L  |/2 L
—  CO S

|/2 L  |/2 Lcosh

and
d -

1/2

Ф =  arctan
sinh ] j 2 L  . [/2 L— sin ;

sinh ('2 L

(6 )

with 0 5S Ф ^  ?r/4. Here <pd =  Ъа0/1/С Bco is the magnitude assumed by the amplitude 
cp0 when the dislocation segment forced vibrations are overdamped; L d =  2 |/C/Bco is 
the characteristic damping length, an important parameter of the theory developed. 
For further purposes it will be rather useful to introduce the effective dislocation 
segment length i 5 related with <p0 =  ba0£ j2 G  by the same equation as in the absence 
of viscosity.

In Fig. 1 a and b the q>JcpA vs. L j L & and Ф vs. L 2]Ld dependences are plotted. Since 
■XjLd — (p0j(pd by definition, the i { L )  dependence can be well approximated by the 
simple function

L at L ̂  ,
а д L d at L  ■ ~ L a

(7).

2) Note th a t in the region of parameter values where the mechanism of Cooper pair break is
active, the constant у can be defined only in some effective sence, since the velocity dependence
of the drag force is essentially non-linear here [9].
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Fig. 1. a) The effect of the amount of damping of a vibrating dislocation segment upon the nor­
malized amplitude of its “angle of attack” and b) the phase shift with respect to the applied stress

This can be easily seen in Fig. 1 a. The approximate representation on Jf(L) greatly 
facilitates the account of the influence of viscosity upon unpinning from their pinning 
centres.

Another important dynamic characteristic of a dislocation segment performing 
forced vibrations is its mean displacement from the equilibrium position,

L/2

U(t) =
r  J '  ^

- i / 2

t) dcc.

Substituting (2) in the integrand and carrying out the integration, we obtain

Cxicot

2 xL
^ I ta n T '

* 2
Bringing this to the form

U(t) =  U0 sin (cot — ip) , (8)
we can find the mean displacement amplitude of the segments and its phase shift 
from the external stress. With со < ^ y  the two values are given by

11/2 1
<f> <f% 

2 r co s0 + z ,

and

ip =  arc tan L  —  j? cos Ф
if sin Ф t

(9 )

respectively, with 0 fS ip 2S тг/2; here Ud =  boJBco is the displacement amplitude of 
an overdamped segment, 1  and Ф are assumed to be expressed in terms of L  with the 
aid of (6) and the known relation of £  to cp0. Fig. 2a and b represent the U0/U d vs. 
L ‘l jL% and ip vs. L 2/L \  dependences. Similar as in the foregoing figures, the curves 
almost merge with their asymptotic representations as soon as L  becomes a few times 
larger than L (l.

These results suggest that the vibrating dislocation segment is overdamped at 
L  3s Ld. The mode of its motion is virtually the same as that of an unpinned dis­
location moving as a whole under the action of a sinusoidal stress (save the sections 
directly adjacent to the pinning points). There is a rather wide range of segment 
lengths, L  SS L (l, where viscosity exerts a substantial influence on the segment dynanic. 
The effect of viscosity can be neglected only at L
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Fig. 2. a) The effect of the amount of damping of a vibrating dislocation segment upon the nor­
malized amplitude of its mean displacement and b) the phase shift with respect to the applied 
stress

3. Effect of Yiscosity on Dislocation Unpinning from Their Pinning Centres

As a factor responsible for the dynamics of vibrating dislocation segments, viscosity 
has a direct effect on the process of dislocation unpinning from their pinning centres 
under the action of an applied stress. To analyse this effect, first consider the force 
acting on an arbitrary pinning centre on the part of adjacent dislocation segments of 
lengths Ь г and L %, respectively. Using the linear dislocation tension approximation, 
and recalling (5) and the definition of X, the force can be written as 

/(f) =  /0 sin (cot — в) , 
where the force amplitude /0 and the phase shift в with respect to the applied stress are

U = b- Y  №  +  cos (Ф, -  <P2) +  ifp /2  «  ^  (X, X,

and

=  arc tan
Хг sin Фг +  Хг sin Ф2
Хг cos Ф1 +  Хг cos Ф2

(10)

with 0 ^  б тг/4. The approximate representation for /0 yields the highest errors at 
L± ^  -̂ {j and. L% ^ 'd> or L i  _ _ _ _ _ 
of Fig. l a  and b, it is less than 10% even in these cases. With L v  L 2 L <l or L lt 

L d the error is quite insignificant. Hence, the effective segment lengths are prac­
tically additive.

Now we take into account that the dislocation segments cannot get unpinned from 
their common pinning centre unless /0 exceeds the maximum dislocation-centre 
bonding force /max- This condition can be written as

X{Lt ) +  X (L2) >  ^  =  XSo. (11)

In contrast to the unpinning condition used in [1], this equation involves effective 
segment lengths, hence takes into account the viscosity.3) Generally, this should 
bring about a dependence of the critical stress amplitude <r0 upon viscosity. Since the 
first to be unpinned are the longest segments among those present in the crystal, the 
unpinning criterion given above implies

L d and L 2 5S L d. However, as can be seen in the plots

= /т а :

3) To avoid misunderstanding, we would like to  emphasize th a t the region of validity of (11) is 
limited to  forced vibrations of dislocation segments.
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Here L max is the upper limit to the dislocation segment lengths. In view of the random 
distribution of defects along the dislocation, L max can be assumed approximately the 
same as L N. Note that the existence of a0 is a direct sequence of the existence of the 
upper limit X(Lmax) to the effective segment length. According to (7), the latter 
magnitude reaches its limiting value L d at £ max ■ >  L & and we have for

u
o,. = ЪЬЛ 2 Ъ

coB
C~ (12)

This differs from Mason’s result [8] by the factor jcoB/C,  the discrepancy being due 
to the fact that Mason neglected the influence of viscosity upon the shape of the 
vibrating dislocation. The effect of viscosity on cr0 was also considered in [9] but the 
approximate formula for ac given in that paper looks unreasonably complex and 
seems to represent the qualitative aspect of the dependence only.

Another side of the problem considered here, i.e. the effect of viscosity on dis­
location unpinning, is the role played by viscosity in controlling the unpinning prob­
ability of dislocation loops L s  pinned to point defects. Let us calculate the probability 
P(o’q) that two adjacent dislocation segments would not get unpinned from their 
common pinning centre at a0 >  erc during the entire period of vibrations. It is clear 
enough that the said probability is equal to that of finding the segment lengths in 
the region where the inequality of (11) does not hold. In other words, with 
and L 2 belonging to S ao we would have4)

=?(£,) +  1 ( L 2) <  <  2 2 { L S) . (13)

It should be noted at once that LN <C £ d leads to Lv L2 <C Ld. The latter inequality 
should also hold with L K <  L d, provided that L ao <  Ld (otherwise t!3 t would not 
be true). Hence in such cases ^(Lj)  =  L x and %{L2) =  L 2. Taking this into account in 
(13), we come to the conclusion that with L N <C L d or L N <  L d and / -  <  L d both 
the region S ao and the probability P„o are described by the same formulas as with no 
viscosity.5) Hence, here P(c0) can be represented by the formula obtained by Granato 
and Lticke [1], viz.

Р Ы  =  1 - ( £ -
\°o

Г

e X P | - ^
where Г  =  2/max/6Lc denotes the characteristic stress level and L c the mean segment 
length.

Fig. 3. The range of dislocation segment lengths not obeying 
the condition of unpinning from their common pinning centre 
under the action of a sinusoideal external stress

4) The inequality Jta„ <  2Jf’(£N), or more exactly JfСТо <  2^(Lm3X) implies r?0 >  <7C.
5) The statement concerning P(ff0) is true only if the effect of viscosity upon Kohler’s distribution 

function of dislocation segment lengths can be neglected.
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Let us now analyse the situation characterized by L N >  L d and L d £ aa <  2L d. 
Making use of the above-mentioned approximate representation of Jf(L), one can 
easily see that S a<l has the form as shown in Fig. 3. Since the probability wanted is 
defined by the integral

With er0 expressed by (12), P (a0) is obviously dependent on viscosity. Besides, in the 
range of stress amplitudes crc <C cr0 <[ 2ffc the role of viscosity manifests itself through 
the semicatastrophic mode of dislocation unpinning from their pinning centres. This 
follows directly from the fact that fulfilment of the unpinning condition (11) does 
not necessary imply the validity of the propagation condition %{LX +  L 2) +  >
>  i^ .  Note that all the considerations presented relate only to L s  >  L d and L d <  
<  <  2L d. With either L N <  L d or L s  >  L d and Jf0o <  L d, unpinning of dis­
location segments from their pinning centres is a catastrophic process, i.e. depinning 
of some segments necessarily involves unpinning of the adjacent ones.

The probability for none of the segment pairs placed along the dislocation line of 
length to get unpinned over the entire vibration time is approximately equal to 
P n(o0) where n  =  L ^ /L B — 1 is the mean number of pairs. Hence, the probability of 
at least one pair to get unpinned can be expressed as 1 — P n(a0). In case the unpinning 
process is of catastrophic nature, 1 — Р'!(с0) coincides with the probability P N(cr0) 
for the loop to get unpinned from all of its pinning points.6) As a result, the total 
lengths of dislocation loops unpinned within a unit volume of crystal would be

A  denoting the dislocation density. In the opposite case, i.e. when the dislocation 
depinning process does not spread to the entire length L N, the total number of seg­
ments unpinned in a unit volume is given by

where L ao is the mean value of the total unpinned length per loop length L N. To cal­
culate L aa first note that in this case effective lengths of all segments formed as the 
result of unpinning events is the same, namely L d. This is true even for unpinning 
from a single pinning centre. Indeed, as can be seen from Fig. 3, the inequality 
- î +  L d holds outside the region S ao, hence +  L 2) =  L d. In other words, 
those of the segments would not be unpinned whose length L  satisfies the condition 
${L )  Х(вй) — L d. The latter can be simplified by replacing %(L) with L, as the 
right-hand side still proves smaller than L d, due to the constraint L d <  <C_ 2L d.

6) The value is different from the M of [1] in the respect th a t it represents the maximum un­
pinning probability, realizable over the vibration half-period, rather than the probability at a 
given moment. The necessity for such an approach will be evident later.
21 pliysica (a) 73/2

we have

(14a)

(14b)
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Finally, we can write for

L  \  d L
N ' Lc

о

L  exp . .
с /  с

- £>ё“ё +1)мр(й-гС
Taking into account this result and (14a) and (14b), the total length of dislocation 
loops unpinned in a unit volume can be written in the general case as Л Р к(<г0) where 
P N(0O) at early stages of the unpinning process (i.e. when cr0 is small compared to Г)  is 
given by the expressions

•Рц(°о) =

+  l )  exp (  — —] at either L N <  L d or L s  >  L d and a0 >  2ac ,
L N

1-£c

Z'jt
l ~L c Wo

a, (15)
Г  \  ( Г  Г  \  ( Г  2 Г \

■ и + ‘ J  w _  ^ + “ р  т~ "Ls >Lt “ d  °‘<а‘< 2а" ■
Unlike the first formula, the second one of course cannot be treated as the probability 
for the loop Lj ,  to get unpinned from all of its pinning points, as the situation simply 
does not exist with semicatastrophic unpinning. Assuming that the value (14b) is 
the result of total unpinning of some fictitious loops one could interpret the cor­
responding expression for P N(c0) in the same sense as before. Then (15) would imply 
that viscous renormalization of the probability for a dislocation loop Zx to be un­
pinned from all of its pinning defects only occurs in the case of overdamped motion 
and within a finite range of applied stress amplitudes.

4. Effect of Viscosity on Dislocation Hysteresis

The quasi-static hysteresis analysed in [1] is determined by the dislocation drag due 
to point defects which is similar to dry friction. Meanwhile, because of interaction 
with various quasiparticles in the crystal, the dislocations experience viscous friction 
as well, whose significance increases with an increase of co. In the high-frequency 
range it becomes the dominant effect forming the dislocation hysteresis loop. It seems 
noteworthy that the influence of viscosity is essentially non-linear, which manifests 
itself through the lack of additivity of the energy losses determined by dislocation 
unpinning from point defects, on the on§ hand, and their motion through the viscous 
medium, on the other. Analysis shows the additivity to take place only at low enough 
frequencies, co ^ 4 ,C jB L \  where the dynamic effects are too low in magnitude to 
have any impact on the quasi-static hysteresis. As the frequency increases, their 
influence becomes noticeable. At co ̂  4:CjBL% the quasi-static hysteresis disappears, 
being replaced by a purely dynamic one. The way it occurs can be followed in Fig. 4 a 
and b showing, in terms of reduced coordinates, the stress dependence of the mean 
displacement of the dislocation loop L moving in the underdamped and overdamped 
regime. The points В and B' correspond to collisions of the loop with point defects. 
Upon being pinned by the defects, the loop bends between them under the action of 
the growing applied stress and finally breaks away (points С and C'). Further on it 
performs a markedly non-stationary motion followed by the forced vibration regime 
(beginning at D and D'). According to (8), the loop />N collides with point defects at
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Fig. 4. The dislocation hysteresis 
in the a) underdamped and b) 
overdamped case. The area of the 
static hysteresis loop is hatched

-7 0 1 - 1  0 7
a/a0 —*■

external stresses of magnitude | c0 sin . If this value exceeds the level where the 
loop can get unpinned from all of its pinning defects, the hindering effect of these 
latter would be felt, but only very slightly, especially with short segments (L  
<^(2jr/.B) j M C )  whose unpinning is greatly favoured by the inertia effect [15]. 
Hence, one could say that the dislocation moves past the defects without taking 
notice of them. This situation corresponds to the case when the points С and C' are 
inside the dynamic hysteresis loop, i.e. the static hysteresis is completely absent. 
Generally the dislocation hysteresis reveals both static and dynamic features.

Appealing directly to the amplitude dependent dislocational internal friction in 
the presence of viscosity, we first notice that the major part of the loops getting 
unpinned over one alteration period of the applied stress corresponds to stresses a 
close in absolute magnitude to cr0, as a result of the exponential distribution in seg­
ment lengths.7) Making use of this fact, we can write, to a good accuracy, the following 
equation for energy losses in a unit crystal volume over the period T  =  2re/co:

A W  =  Ди>н(<г0) (16)

where AwN(cr0) are energy losses of a single loop being unpinned from point defects 
at an amplitude magnitude of the applied stress a0 and over the period T  of the loop 
motion; (Л /L^) Р-$(ой) is the total number of loops getting unpinned in the unit volume 
of the crystal per complete cycle of alteration in a(t). The probability Ря(сг) being 
known (see (15)), the problem reduces to calculating Дг%(сг0) which is given by the 
integral _

A™n((T0) =  L^b U n(a) dc;. _  (17)
The integration is meant over the applied stress period, and UN(a) denotes the mean 
loop displacement which is regarded as a function of the instantaneous value of <y(t).

To establish the functional dependence U y (a) generally is far from being a trivial 
problem, in view of the complex motion of the loop L N during its break-away from 
the pinning centres and further build-up of the local vibration regime controlled by 
the applied stress. It is easily solvable in the quasi-static case analysed by Granato 
and Lticke [1], since at low frequencies the break-away can be considered to occur 
instantaneously (compared with a quarter of the vibration period), and the loop 
unpinned “adapts” very quickly to the applied stress (cf. [1]). The situation is even 
more simplified by the fact that the loop L s , undergoing elastic contraction during 
the unload part of the stress alteration cycle, collides with point defects at very low 
stresses actually close to zero. Hence, there is no need for taking into account the

7) I t  should be underlined once again th a t we speak of early stages of the unpinning process. 
21*
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inertia effect [15] which, as has been shown in [16], can manifest itself at cr0 sin 
greater than one half of the stress necessary for breaking the dislocation away from 
an obstacle by a static force. For unpinning the loop L N at the amplitude stress cr0 
the condition is met at >  я/6 which is equivalent, as can be seen in Fig. 2 b, to 
the demand that the loop be overdamped. Therefore, at co >  cod (cod =  4CjBL%  being 
the characteristic damping frequency) the U s (a) dependence should be analysed 
with account of the inertia effect. In this connection we would like to point out the 
considerable importance which seems to have been overlooked by many writers. 
The concept of inertial surmounting of local obstacles by dislocations [15] has been 
analysed in a model based on the assumption that the dislocation segments into 
which mobile dislocations are divided by obstacles obey a 8-like length distribution. 
In this case the dislocations, getting unpinned from all the pinning centres at a time, 
naturally can surmount them at a twice lower stress than the critical break-away 
value owing to the additional bending of the segments. Whereas for distributions 
characterized by some reasonable amount of smearing, e.g. the Kohler distribution, 
the situation does not seems probable. Indeed, the break-away process is started 
through the inertial mechanism at one or a few favourable sites only and cannot 
spread through the entire loop length because of the severe damping of the seg­
ment dislocations. In other words, the inertia effect results here in a much smaller 
reduction of the unpinning stress for the entire loop as compared with the re­
distribution.

With an increase in the stress cr0 sin at which the dislocation collides with point 
defects, the number of points increases where the break-away is initiated by the inertia 
mechanism. Hence, the importance of the inertia effect increases at bibber amounts of 
loop overdamping.8) But at the same time the area occupied by the static hysteresis 
loop sharply decreases (cf. Fig. 4a and b), hence the contribution of the inertia effect 
to the total hysteresis losses can be neglected. The hysteresis loop as she dislocation 
considered, that gets unpinned from defects at the stress ce. wesM represent an 
ellipse with rectangular protuberances whose points C' and С {Fig. 4) would have 
coordinates (—1, 0) and (1, 0), respectively. According to |8 |, the ellipse is given by 
the equation

U x Y  „ u *  <r , [ ° Y  . ._ 2 c o s y f t = = r - — +  —  = s m - F x -  Uo n J  f / 0 X  ° 0  \ ° b /

Calculating the integral of (17), i.e. the area bounded by this « и г е . and substituting
the result into (16) we can find the ultrasound attenuation rate, viz.

я _  A W  _  Gb2 лт2 Uov 
H allG  ± C A L , l Tjm

71
C O S y>x +  I —  4 -  y>x I s i n

where G is the shear modulus. With L s  <€<L d it is easy to obtain, making use of (6), 
(9), and (15), the result of Granato and Lticke [1] and Rogers [2], namely

. аъ*лъ\! лВюИ\/г i - r \
^  =  w v ( 1 +  » r ) t + r p t ) -

With L d we have 
явЬ*Л

Bco Р ц (аа) >

8) I t  is implied th a t В remains constant while co and change.
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Fig. 5. T he effect o f th e  a m o u n t o f  d is­
loca tion  loop dam ping  up o n  th e  am p litu d e  
dep en d en t ab so rp tio n  o f u ltra so n ic  w aves 
in  a  c ry sta l w ith  a  th ree -d im ensional a rra y  
o f d islocations

where the unpinning probability P ^ {g0) is given by (15). As was seen, (5H in the over­
damped case happens to be inversely proportional to co and B . Fig. 5 represents the 
dependence of (18), i.e. the ultrasound attenuation rate vs. the dislocation loop 
damping at a0 >  2ac. As is seen in the figure, the theory predicts a maximum of the 
attenuation at со рй сой.

Viscosity affects not only the ultrasound absorption but also the propagation 
velocity of ultrasonic waves in the crystal. With slightly damped dislocation loops L N 
the correction term to the modulus defect is proportional to co/cod. In case the dis­
locations are highly overdamped, the attenuation rate to the modulus defect ratio 
naturally shall be the same as for amplitude independent losses [1]. This statement is 
confirmed by the experimental results to be described in a further paper.
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