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CORPORATE DECISION-MAKING MULTIAGENT MODELS

A. Milov
S. Milevskiy

Any goal-oriented activity is related to decision-making, that is why intuitive understanding of the content and
structure of decision-making problems is fairly obvious. Nevertheless, until now, there has not been developed a sufficiently
general theory of decision-making. This is primarily caused by the diversity of the tasks of decision-making without
explicit intersections in their formal structure and substantive content. Therefore, this research is limited to the class of
problems where decisions are made by a variety of decision-makers between whom the information necessary for
decision-making is distributed, and who operate in parallel interacting with each other in the decision-making process.

Designing a structure of a decision-maker group interaction, and interactions between them for real time effective
management of a complex, large-scale system has been discussed. The authors have attempted to combine, on the
methodological level, the classic concept of decision-making, approaches to economic system distributed management
and multiagent modelling.

Thus, designing a structure in which problems of distributed control can be successfully presented has been
described.

The proposed approach is based on the assumption that none of the decision-makers have a complete and
accessible to them system model. The proposed structure can be used for a corporate organization design in which
a person is one of the resources for decision-making.

Keywords: multiagent modelling, Markov decision model, system structure, organizational design, interaction of agents.
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MYNbTUATEHTHI MOAENI NPUAHATTA KOPMOPATUBHUX PILLEHb

Minos O. B.
Minescbkuti C. B.

byods-sika yineopieHmoesaHa OisinbHicmb noe'a3aHa i3 nNpulHAMMSM piweHb, moMy iHMYimueHi ysi8neHHs1 rpo
3micm i cmpykmypy npobnemu npulHamms piweHb documb 04e8uldHi. [[pome Ao cb0200HI He icHye desikoi documb
3aearnbHOi meopii npuliHaMmMSs piweHb. [MpudyuHU Ub020 Crid wWykamu, nepw 3a ece, y Pi3HOMaHImHocmi 3agdaHb
npuUlHAMMS piweHb, SIKi He Marmb SS8HUX NepemuHie y ixHil ¢hopmarnbHit cmpyKmypi ma 3MiCIO8HOMY HarO8HEHHI.
Tomy cripaexHio pobomy 0bMexeHO KiiacoM mux 3ag0aHb, y SIKUX PilueHHsT npulimae 6e3niy ocib, Mix sKuMU po3rio-
OineHo HeobxiOHy Onsi NpUUHAMMS pileHHs iHgbopmauiro, i SKi hyHKUIOHYOMb napanesbHo, 83aemModitomb MiXX cob0k
y Apoueci NpuliHAMMS PilUEeHHS.

Po3sansaHymo npobriemy npoekmysgaHHs1 cmpykmypu 83aemModii epynu ocib, ski npuliMaroms pilueHHs, i 3aemModili
MK HUMU O eqheKmu8HO20 ynpasesiHHA CKadHOoK, eerlukomMacwmabHOK CUCMEMO 8 PEexXuMi pearibHo20 Yacy.
Asmopamu 3pobrieHo cripoby Ha Memodorno2iHHOMY pieHi 06'€OHamu Knacuy4Hi KoHUenuil npulHamms pilweHs i nidxoou
00 po3rodineHoeo yrpassiHHA eKOHOMIYHUMU cucmeMamu ma Myrbmua2eHmHe MOOento8aHHs.

Takum 4yuHOM, y pobomi 8i00bpaXeHO MPOUEC MPOEKMy8aHHSI CMPYKMYypuU, Yy Mexax sikoi Moxe 6ymu ycriwHO
rnodaHo npobriemu po3nodinneHo20 ynpassliHHS.

Banpono+oesaHutli nidxid 3acCHOB8aHO Ha MpUryWeHHi MPo me, wo Xo0Ha 3 0Cib, sIKi MpuliMarme PilUEHHS, He Mae
roeHoi' U docmynHoi iti Modeni cucmemu. 3anpornoHo8aHy cmpykmypy Moxe 6ymu eukopucmaHo OJisi MPOEeKMYy8aHHs
opeaaHisauii, y sikiti mroduHa siKk 00UH i3 pecypcig npUlHIMMS PiLueHHs.

© A. Milov, S. Milevskiy, "EkoHomika po3suTky" (Economics of Development), Ne 3 (79), 2016



o .

ide, 1i3ae’
&13%7 A 48HHT6°

80

Knro4oei cnoea: mynbmuazeHmHe MOOEI08aHHS, MapKieCbka MOOesb NMPUUHAMIMS PileHHs, cmpyKmypa cuc-
memu, opaaHisayiliHe npoekmyeaHHs, 83aeMo0isi a2eHmie.
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MYJIbTUATEHTHbIE MOAEJIAN
NMPUHATUA KOPNMOPATUBHbBbIX PELLUEHUNA

Munos A. B.
Munesckuti C. B.

Jlobasi ueneopueHmuposaHHasi 0esimesibHOCMb Cesi3aHa C MPUHSMUEM peweHul, no3momy UHMYUMmMUEHbIe
npedcmasrieHusi 0 codepxxaHuU U cmpykmype rnpobrnemb! MPUHAMUS peweHul docmamo4YyHO o4e8udHbl. Tem He MeHee,
00 Hacmosue2o 8peMeHU He cyujecmeayem Hekomopol docmamoyHo obuweli meopuu npuHIMus peweHud. MNpuyuHs!
amoeo credyem uckamb, rnpexoe eceeo, 8 pasHoobpasuu 3adady MPUHAMUS peweHul, He UMEKUWUX S8HbIX nepe-
ceyeHull 8 ux ghopmarnbHol cmpykmype u 8 codepxkamesibHOM HarnonHeHuu. osmomy Hacmoswass paboma ozpaHu-
yueaemcsi Knaccom mex 3aday, 8 KOmopPbIX PEWEHUST NPUHUMAIOMCS MHOXECMEOM 3KOHOMUYECKUX a2eHmos, Mexoy
KomopbIMu pacrnipedesieHa Heobxodumas Orisi NPUHSIMUST peweHuUsi UHghopMayusi, U Komopble yHKUUOHUPYom napari-
nesnibHo, 83aumolelicmeysi Mexdy cobol 8 nMpouecce NPUHIMUS PeweHusl.

PaccmompeHa npobnema npoekmuposaHusi cmpykmypbl 83aumodelicmeusi epynbl a2zeHmos, nPUHUMaWUX
peweHusi, u e3aumodelicmeuli mexdy Humu Ons 3¢hheKMuUBHO20 yrnpasrieHusi COXHOU, KpyrnHomacwmabHoU cuc-
memoUl 8 pexume peasibHO20 epeMeHU. Aemopamu npednpuHsama MnornbimKka Ha MemodosI02U4ECKOM ypoBHe ObOb-
e0UHUMb Kraccu4yeckue KOHUenuuu rnpuHamus peweHul, nodxodbl K pacrnpedesieHHOMY yrpas/ieHU0 IKOHOMUYECKUMU
cucmemMamu U Mynbmua2eHmHoe MooesiuposaHue.

Takum obpa3om, 8 pabome ompaxxeH MPOUECC MPOEKMUPOBaHUsSI CMPYKMYypPbl, 8 pamkax Komopol Moaym 6bimb
ycnewHo npedcmassnieHbl npobremsi pacrnpedesieHHO20 ypasneHus.

lNpednazaembili n0Ox00 ocHoB8aH Ha MPedNooXeHUU O MOM, YMO HUKaKoU U3 a2eHmos, MpUHUMaroUwux pewe-
Hue, He umeem ronHol u docmynHol emy moldenu cucmemesl. [pednazaemasi cmpykmypa Moxem Ucrosib308ambCsi
0nsi MpOeKmMuUpPoBaHUs opeaHU3auUOHHOU cmpyKmypbl Kopriopayuu, 8 Komopol Yernoeek ebicmynaem e kadecmee 00-
HO20 U3 pecypcos NPUHSMUS PELEHUS.

Knroveeble croea: MynibmuazeHmHoe ModenuposaHue, MapKoeckas Modesb MPUHSIMUS peweHus, cmpykmypa
cucmembl, Op2aHu3ayUOHHOE MPoeKkmuposaHue, ezaumodelicmeue a2eHmos.
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Management decision-making in corporate strictures can be considered as decentralized
management carried out by a group of economic agents having a common global goal. Such a situation is
characterized by the fact that no agent during their work has the possibility of monitoring the processes and 8
the state of the whole system. The behavior of each of the agents can be characterized by independent
observations and local target functions. Such a decision-making system can be described quite well by the
models of Markov decision processes (MDPs).

Recently, the indicated models have been adequately studied as a mathematical framework for consistent decision-
making in stochastic domains. In particular, the decision search planning problem for an individual agent in stochastic domains
was modelled as partially observable Markov decision processes (POMDPSs) or fully observed MDPs [1 — 3]. For the con-
sidered planning problems the optimal scheduling plans can be found using the methods of operations research in relation
to the corresponding Markov decision processes. Significant results in the decisions of individual MDPs were obtained using
a domain structure [4; 5]. In [6] an approximation of MDPs is described, which suggests that the compensation function can be
decomposed into local compensation functions, each of which is dependent on a small number of variables.

Furthermore the authors are interested in a separate Markov decision process, which is jointly run by a set of
decision-making agents. They cooperate in the sense that they only seek to maximize a global goal (or to minimize the cost
of achieving it). However, each of the agents has no opportunity to monitor the entire system as a whole in the decision-
making process. Similar processes are characteristic of many application areas, from individual production (enterprises) to
multinational corporations.

These processes are examples of decentralized partially observable Markov decision processes (DEC-POMDPS) or de-
centralized Markov decision processes (DEC-MDPs). Complexity of decision search for these processes has been
investigated in [7; 8]. In [9] an algorithm of a joint research strategy (JESP) is presented, which finds an optimal joint
decision. In [10] the researchers made an attempt to explore the method of decentralized decisions based on the gradient
descent approach for network learning when the system model is unknown to the agents. The author of [11] suggests that
every decision-making agent has an appointed task of local optimization. The following analysis shows how to create a
global objective function for optimization of a problem when agents are free to exchange information about the values of
their local extremes.

A common feature of these papers is a rejection of the assumption that each agent has their known local compen-
sation function. Questions that they are trying to answer are how to configure or manage the local functions of remuneration
to approximate the actual remuneration function of the entire system.

The algorithm for finding an optimal decision in a decentralized corporate management structure is presented in [12].
The presented algorithm is implemented on the assumption of a certain remuneration function structure. The generalization
of dynamic programming methods to find optimal structures of decentralized management decisions is described in [13].
Special class models DEC-POMDPs were reviewed and presented in [14]. In [15] a method of searching effective decisions
for this class of models was proposed. It is interesting to study the case of decentralized management, in which the agents
share information about each other's actions during the off-line planning stage. A decision including a joint strategy of an only
one possible action for each agent is presented in [16]. It makes sense to compare the obtained decisions with the decisions
found for centralized multiagent systems, modelled as MDPs structures [17], where the planning stage (off-line), and the
control stage (on-line) are carried out in a centralized system, where full observability is realized for all agents.

Any goal-oriented activity is related to decision-making, so intuitive understanding of the content and structure of
decision-making problems is fairly obvious. Nevertheless, until the present time, no sufficiently general theory of decision-
making has been developed. The roots of this should be primarily linked to the diversity of the decision-making tasks that
have no explicit intersections in their formal structure and substantive content. A fairly complete review of these problems is
contained, for example, in [18; 19]. It seems clear that it is hardly possible to build a universal theory, applicable to any
problem of decision-making [20 — 22].

Therefore the authors have restricted themselves to the class of problems in which decisions are taken by economic
agents, among whom the information necessary to make decisions is distributed, and who operate in parallel, interacting
with each other in the decision-making process.

The research deals with the problem of the interaction framework design for decision agents and interactions bet-
ween them to effectively manage a complex corporate system in real time. An attempt has been made to combine the
classic concept of decision-making approaches in the field of distributed control in economic systems and multiagent simu-
lation on the methodological level.

The proposed approach is characterized by the following features:

1) multidisciplinarity and conceptuality of the approach;

2) the level of detailing that determines the applicability to solving any practical problem;

3) transparency, which means that the proposed approach is one of many approaches that could be used to manage
this problem.

Thus, the structure design process has been described, in which the processes of distributed control can be
successfully implemented for a group of economic agents.

The proposed approach is based on the assumption that none of the agents who make decisions, have an adequate
model of the entire managed system. More specifically, each agent knows about the actions of only a single subsystem, for
which he is an "expert", and meanwhile he does not know anything about the structure of the system beyond his domain.
Assessing the impact of his decisions on the rest of the system and the influence of external to him decisions on the managed
subsystem can only be obtained in the process of interaction with other agents like him. Thus, the process of management
decision-making is distributed among the agents, and the coordination of planned activities to a large extent depends on the
available resources of interaction. The proposed structure can be used for the design of an organization in which an eco-
nomic agent acts as a resource for decision-making.

Further consideration of multiagent modelling of processes of management decision-making in corporate structures
will be based on the combined use of four main concepts [23 — 25]:

1) the Markov concept of a condition;

2) the law of Bayes in the probability theory;

3) the use of a global performance scalar index;

4) dynamic programming.
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When these cancepts are used for systems containing multiple decision agents_the following

problems arise.

Each agent can assess the conditional probability of the state of its own process, but dynamic 8
programming requires the knowledge of conditional probabilities of the process state effects of other
agents, coming in the form of input signals from other agents. That, in its turn, leads to a necessity for any
agent to obtain models of other agents (which have
a memory, at least in the form of conditional probability, and hence the state space), and for those and other agents to have
knowledge about the models of the first agent (and models of their patterns), etc. With this approach, the problem of the
optimal strategy formation for multiagent decentralized management usually becomes difficult in this structure.

One of the ways to overcome these limitations is to provide each model agent with only a part of the state space and
the related dynamics. In this case models used by all the agents should represent the system as a whole, and each agent
should know that all other parts of the system do exist and provide influence on the relevant part of the system. This logic of
reasoning leads to the following formulation of the principle of corporate level management decision-making multiagent
modelling: every decision-making agent has a limited model of the controlled system.

Next, let us consider two agents interacting with each other so that the action of one agent ("A") directly affects the
dynamics of the other one ("B"). There is a need for communication between them. Agent "B" must notify agent "A" of the
action taken by him, so that it could be possible to explain the actions arising from these consequences. Agent "A" must
inform "B" about his goals, so that agent "B" could plan his own actions that could help agent "A" to achieve the goal set by
him. Thus it is necessary to prevent strategies, where the channel with endless bandwidth is used for transmitting all
messages to a single node that implements centralized conventional strategy. Therefore, there must be formulated some
limitations for relations of a particular type.

If two agents have models that are almost opposite in their variables, the set of attributes, which they could
exchange, of course, is limited. A common feature of the two agents, "A" and "B", is the set of interaction variables, pro-
duced by the agent, which affects the other. It is only common context that they have as a basis for communication. This
reasoning leads to the formulation of the second principle of multiagent decision-making system modelling: "communication
between agents is realized only with the use of variables directly related to the main interaction variables".

The traditional approach to the distribution of the computing load between decision-making agents is to use iterative
exchanges between them. This approach, while often effective, generally requires a significant bandwidth of the feedback
means, since in each step several iterations must be performed to determine the current set of control inputs. For this
reason, developed coordination and decision-making strategies of management decisions must take into account the
following principle: "iterative methods, which suggest a connection between the agents at each step, must be avoided".

Finally, the definition of the modelled structure itself ensures that the decision-making agents will be often missing
information on many processes that can influence them. Thus a decision must be taken under conditions of uncertainty.

The traditional approach in the case of decision-making under uncertainty is the assumption of the worst case (and the
relevant criteria). It gives an attractive advantage to provide the autonomy to local decision-making agents: communication
serves as a means for reaching agreements between two agents, limiting the actions of each of them. Each agent can be
free to choose one of several alternatives within the agreed limits, knowing that another agent would consider his choice as a
possible worst case for himself. Thus, the latter formulated principle is as follows: "uncertainty about the future actions of a decision-
making agent can be removed or by either messaging or a worst-case assumption”.

A distributed multiagent decision-making economic system can be defined as a tuple

MAS = <A, E, R, ORG, ACT, COM, EV >,

according to which it is understood as a set of agents A, which can operate in some environments E, which are in
certain relations R and interacting with each other, forming
a certain organization ORG, having a set of individual and joint actions ACT (strategies of behavior and actions), including
possible communication actions COM, and characterized (as, indeed, individual agents) by capabilities for evolution EV.

The decision-making system topology can be expressed in graph G, which consists of a finite set of N-nodes and
a set of L-arcs

G=(N,L). @
For convenience, we assume that the nodes are numbered 1, 2, ..., | N | = N in some unique way. Arcs connect one

node with another in one direction
LN xN, 2)

where (i, j) < L indicates the bond connecting node i to node j. G will reflect the basic dynamic effect of the i-agent
subsystem on the j-agent subsystem. (Note that the agent i always affects the agent j, which is implicitly the owner of its
own i-model).

Each arc will represent not only a dynamic interaction, but also an appropriate interface in the decision-making
structure. Since the graph is not necessarily bidirectional, no assumption about the symmetry of G is needed.

The arcs represent relationships of subsystems to each other, modelled in each node, but we also need to consider
their relation to the inputs, outputs and goals of the system.

Inputs: each entry must be defined by one and only one agent (the one that models its direct impact).

Outputs: each system output can similarly be only associated with a single agent, which models the formation of this
output, based on the variables in the model of this agent.

Goals: some agents bind specific goals with their own models. Other agents may have no individual goals — their
function is to organize (coordinate) operations of other agents so that their goals could be achieved.
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This preserves a-di .
he has M;. The model can mclude formal representatlon on how to interact with other agents, the strategy of 8

behavior and actions of the agent as well as the possibility of the agent evolution. We introduce the concept
of an agency decision-making system module DM; as a combination of the decision-making agent and the
model of the subsystem he represents

DM; = (M;, Ay). (3)

This refers to an agent that makes decisions independently of other agents, and which has a model of some sub-
system in which he is an "expert", and which has to communicate with other agents in order to achieve a desired level of the
whole system functioning quality.

Now we can say that the problem of distributed decision-making is presented in the form of a multiagent module
structure if the local models M; and interaction relationships G are identified. Thus, the modular multiagent model is an ex-
tension of the classical model concept for the explicit forming of a distributed multiagent structure.

Each local model M; is complete in the sense that it has the Markov properties: there is a set of states X;, but the
local condition change function depends on the interaction variables that reflect the impact of parts of the system whose
models are presented in other modules. Interaction variables are selected from the sets Zj;, which reflect the impact of the
subsystem, modelled in DM, on the subsystem modelled in DM;. They are defined as the interaction function values on
a set of states DM; as follows

i Xi = Zjj. 4

The values that reflect the interaction z;; for each state X;, g;; functions are generally irreversible, i.e. there will be
some pair Xi1 and Xiz, such as

9 () = 05 () for X; # X7 (%)

for any i and j. In other words, it may be an expression in which it is impossible to uniquely reconstruct the condition.

The management and monitoring spaces are defined as follows:

U, is the set of controls, from which one can select the module DM;;

Y; is the set of measurements that can be obtained by the module DM;.

Now the model Mi, which is owned by the DM; module can be determined. Here is the tuple consisting of the fol-
lowing eight components:

X; is a set of the local states;

{Zj} is the sets of an aggregated states;

U, is the set of inputs;

Y; is the set of outputs; (6)
f; is the function for definition of the next state;

h; is the function for definition of the next output;

{gij} is aggregation functions;

C; is the local cost function,

where
fi: XinliX...ZNiXUi %X“ (7)
gij: Xi = Zjj; (8)
hi: XixZyix...xZni = Vi, 9)
Ci: XiXXiXZliX"'XZNiXLli —R. (10)

Equation (7) expresses the constraint that reflects the fact that the transitions depend only on the local state and
direct interaction with neighboring agents, as well as control variables; equation (9) does the same for the outputs. Equation

(10) defines a local agent target function: ci(Xi, X", Zsi, Zai, ..., Zni, Ui) is the cost of transition from the state x; at the time t to
the state x;” at the time t+1, where interaction variables zy;, zy;, ..., Zy; are present, and u; applies. (To simplify the notation,

the vector Z; = (24, Zy;,..., Zy; ) can be entered as a complete set of interaction variables, affecting the subsystem DM;).

An important feature of the introduced formulation is that the concept of a centralized state was replaced by the
notion of a set of local states. To determine the future local response A; to the local inputs it is not enough to know only the
local state X;; the knowledge of the other agents' future interactions is also necessary. Optimal strategies for decision search
usually require a maximum possible amount of knowledge about the results of the possible decisions, it should be expected that
the adoption of local decision will be based on the collected maximum of available information on the local state and future
interactions.

For further consideration, to simplify the process, we assume that the functions of surveillance h; implement the
relationship "one to one": each agent at any time t knows the state and interaction variables with full certainty. This helps
avoid complications introduced by the problem of evaluation, and allows focusing on the coordination problem. Let us make
no assumptions about the relation of local goals and objectives of the organization as a whole, because it involves the con-
sideration of a broad class of organizational structures. The only important structure to be considered is a corporation, where
all economic agents, decision-makers seek to minimize the sum of the local decision-making function values.

It is necessary to mention two properties of the previously made statement. It is obvious, that the distributed model is a
dynamic equivalent for a centralized model. However, the usual way to transfer deterministic approaches to the modelling of
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stochastic processes, which is based on the distribution of (conditional) probabilities as the realization of

states and transitions from state to state, has a serious limitation in the presented context.
Building a centralized model, which is equivalent to a modular multiagent system is traditional, the 8

original formulation is correct for the modelling and there is no fundamental incompatibility of these two

types of models. However, in general, for a distributed multiagent model powers of various sets are much

higher than the powers of the sets, used to determine the local models. The equivalent centralized model has sets of states,
controls and outputs, which are the Cartesian product of the sets representing the individual states, controls and outputs.
The function of state transitions in the centralized model is the direct product of local functions f; and g; aggregation
functions. Thus,

X(t) = O (£, X (1) Xy (1))

=(fi(x (t-1),Z,(t-D,ut -1)), - fiy (X (t—1),Z (t -1, up (t-1)))
=(fi(xq(t—1),91, 00t -1); - g (Xn (t =D, ut - 1)), -, (11)

fy (X (t=1), 9n (X (E=D)), -+ G (X (E=D),up (E-1)))
=f0qt-1), - xyt-Duyt-1),-uyt-1)

=f(x(t-1),u(t-1),

where X and U are state and control of a centralized model. Similarly,

YO =010 Y ) = = (W0 ZO): - Py (40, 2 (0)) = h(z(D)
for each z;(t)=g;;(xi(t)).

It can be proved that there is a corresponding centralized model with identical behavior, given by (11) and (12) for each
modular multiagent model.

It would be highly desirable to include in the modular multiagent models probabilistic effects, reflecting the stochastic
processes. Many stochastic control problems can be reduced to a deterministic equivalents by selecting the appropriate
state spaces (such as a probability functions lying in the state-space base). This statement is limited to the case of certain
information about the states (and interactions), and stochastic processes can be reflected only in the functions of the state
transition, but not in the measurements. Stochastic matrices (graphs) of state transition replace the expression:

x(t) = (6 (t -1,z (t-1),u; (t -1)) (13)
by the conditional probability densities:
P (% (1) | x; (t=1), Z; (t 1), u; (t - 1))- 14
This, in particular, allows presenting a forecast of future interactions in the following form

Pz (t+1) =2 p(xi (t+1) 1% ), Z (1).0;1) - PO (1), (15)

where the summation is performed over all x;(t + 1), so that

Thus, any unit of the multiagent model, given by its input interactions, and the state at the time t, can calculate the
probability distribution of its output states and interactions at the moment of time t + 1, using (14) and (15). In this case it
would be desirable to repeat this process: considering a probability distribution of input interactions at the time t + 1,
computed by other agents, the module can determine the output interactions in a next time t + 2, etc.

The model presented above may be defined as a deterministic multiagent system with a variety of local states P(X),
a variety of control U; and the set of interactions P(Z;). In this case, on the given p(xi(0)), u(z) and p(z;i(z)) for all
jyi=1,..,Nand0 < r<titisimpossible to determine unequivocally p(x;(t)) and p(z;(t)).

The difficulty arises from the fact that the interactions determined by the value of p(z;(7)), after some time, are cor-
related, which is ensured by the dynamics of DM;.

In the construction of stochastic modular coordination algorithms the result is important, that DM; requires interaction

sequences probability (i.e., density on Zji ), instead of the proposed sequence of interaction probabilities (i.e., the density of t

on Zj;), to predict the probability of a transition to local conditions and, therefore, the behavior of the entire multiagent
system. Besides that, stochastic modules are equally suitable for the models as deterministic ones.

The following conclusions can be drawn from the research.

The key concept of the proposed approach is an individual system component, a module, whose agent is an expert in
the unique subsystem with respect to which he and only he has the most comprehensive knowledge, and for which he is
responsible.

For modular multiagent systems some methods that support decision-making can be developed. A common approach
to developing mechanisms for coordination is to select a sequence of interactions between the subsystems first, and then to
solve local, relatively independent optimization problems.
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