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1. Introduction

Partial differential equations of the second order of para-
bolic type are more common in the study of processes of heat 
conduction and diffusion. As you know, the process of heat 
distribution in space can be fully described by temperature 
u(x, t), where x∈ℝn. If the temperature is not constant, then 
there are heat flows which are directed from places with 
higher temperature to places with the lowest temperature. 
We consider thermal processes in a fairly large range of 
temperature changes, leading to quasi-linear heat equations. 
So let’s write divergent parabolic equations in general form:

( )( ) ( )= ∇ +t xu div k u,u u F x,t ,

where 

( )
=

∂
=

∂∑
n

i

i 1 i

A
div A x

x
 

for 

( ) ( ) ( )( )= 1 nA x A x ,...,A x ;

( )xk u,u  – the coefficient of the thermal diffusivity;

∂
∇ = =

∂ ∂1 n

u
u grad u ;

x ... x

( )F x,t  – the density of the heat sources (flows).
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An actual and interesting problem is solutions’ proper-
ties investigation of the initial problem (Cauchy problem) 
about distribution of temperature at infinity: find a solution 
of the heat equation

( )( ) ( )= ∇ +t xu div k u,u u F x,t

in the domain x∈ℝn, >t 0,  which satisfies the condition:

( ) ( )= 0u x,0 u x ,
 
x∈ℝn.

The issue of existence and uniqueness of the solution for 
the given problem has been studied by many authors and 
successfully solved (for instance, in [1, 2]). Moreover, in the 
case of a particular coefficient of the thermal diffusivity and 
certain heat flux density, we deal with the process

− λ−

=

 ∂ ∂
= ∇ − ∂ ∂ ∑

n
p 1 1

t
i 1 i i

u
u u u u,

x x
 x∈ℝn, t>0,

( ) ( )= 0u x,0 u x ,
 
x∈ℝn.

2. Literature review and problem statement

Today it is known [3–6], that for the above-mentioned 
initial problem, the phenomenon of instantaneous compac-
tification of the carrier of solution holds, when despite the 
fact that the carrier of the initial function may coincide with 
the whole space ℝn, the support of solution becomes compact 
in an arbitrarily small time t>0 and shrinks in the initial 
moments. The research is devoted to the study and investi-
gation of this phenomenon.

The paper [7] was the first, where the property of instan-
taneous shrinking was systematically investigated for the 
semilinear heat equation

( ) ( ) ( )= ∆ + = > ∀ >tu u b u , b 0 0, b s 0 s 0.

In [7] the conditions on the behavior of the function 
b(u) in the neighborhood of zero that guarantee the prop-
erty of instantaneous compactification for nonnegative, 
continuous, bounded initial function that tends to zero at 
infinity have been found.

For variational inequalities, the property of instanta-
neous shrinking was investigated in [8]. In the papers [9, 10] 
for the one-dimensional equation 

( ) ( )= −m p
t xx

u u g x u

the method, based on the comparison principle was ap-
plied. It was found, for instance, that if 

( ) ( ) ( )
( )

−γ −β
≤ + ≥ +

≥ ∈ β > γ > >
0 0 1

i

u c 1 x , g x c 1 x ,

m 1, p 0,1 , 0, 0, c 0,

then the given problem has the property of instantaneous 
shrinking.

We have to note that a similar phenomenon may occur in 
other important physical models. So, in [11] for the equation

( ) ( )= + < < ≥m n
t xx x

u u u , 0 n 1, m 1 

the following result was proved: 

if ( )0u x ~
−

−
1

1 ncx  as → ∞x ,  then 

( ) − > ∈ ≥ >  
1 n

0

1
u x,t 0, t 0, c , x x 0

n

and the solution u(x, t) has compact support for 

−> 1 n1
t c .

n

Hence, the effect of instantaneous shrinking holds under 
condition: 

−
−

 
=   

1
1 n

0u o x .

Similar results were obtained in [12]. For the sec-
ond-order quasi-linear parabolic equations of the diver-
gent type with the initial data from Lq see [13]. 

In [14] the class of parabolic diffusion equations 
with inhomogeneous source were considered. Two classes 
are highlighted, the radius of the carrier of the solu-
tion depends and does not depend on the geometry of  
the domain. 

But, note here, that the majority of the above-men-
tioned results have been obtained for non-negative solutions 
and with the assumption on the initial function: either 

→ → ∞0u 0, x ,  or it has a majorant. The main tool in get-
ting the results was the maximum principle. It turns out that 
if the initial function has no monotone majorant for example 
as in the case

( ) ( )+ = ∈ >0 0u k 1, k Z, u x 0,  x∈ℝ,

then even for the simplest equation 

= − < <p
t xxu u u , 0 p 1

there are no results, as the comparison principle here is 
inadequate. For higher order equations, we have no such 
principles. Hence, there is an actual problem – to find a 
new approach that will enable to analyze the behavior of the 
solution in more complex and general situations, which do 
not impose additional conditions on the function from the 
Cauchy condition. 

So, let us consider the problem:

− λ−

=

 ∂ ∂
− ∇ + = ∂ ∂ ∑

n
p 1 1

t
i 1 i i

u
u u u u 0,

x x
 x∈ℝn, t>0, (1)

= 0u(x,0) u (x),
 
x∈ℝn, (2)

where ∇u  denotes, as is customary in the literature, the 
gradient, i. e.: 

∂
∇ = =

∂ ∂1 n

u
u grad u ;

x ... x
 

where p and λ – positive real numbers; 
the initial function from the Cauchy condition (2) such 

that u0(x)∈L2(ℝn); n – space dimensions, ≥n 1.
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3. The purpose and objectives of research

The goal of the work is to study the solutions’ behavior 
for a wide class of nonlinear partial differential equations 
through the use of a new approach that has been proposed 
in [3]. Specifically, we are interested in a phenomenon called 
“compactification” (or “instantaneous shrinking”) of the 
solutions’ support supp u(x, t), where

( ) ( ){ }= ∈ ≠nu x,t clos x R : u x,s pp tu 0 .

The mathematical formulation of the problem of the giv-
en work: to prove that the Cauchy problem (2) for parabolic 
equations (1) has the shrinking property of support of the 
solutions. This is an important problem in terms of applied 
mathematics and mathematical physics. 

In order to achieve this goal the following tasks were 
solved:

– to get integral estimates linking different norms of 
solution;

– to reduce integral relationships tо non-differential 
inequality and to analyze this inequality;

– to establish the property of shrinking of the support. 

4. The method of solving the problem

The method of investigation is the result of evolution of 
ideas coming from the theory of linear parabolic and ellip-
tic equations. It can be applied for different purposes and 
different equations. The essence of this approach consists in 
getting and analyzing special (non-differential) inequality 
linking different energy norms of the solution.

5. The result of an investigation of behavior of the carrier 
of solution for the equation (1)

First of all, we introduce here a definition, it will 
enable to present the obtained result on a strict mathe-
matical level. 

Definition. The Cauchy problem (1), (2) has the in-
stantaneous compactification property, if for any t>0 the 
support of the solution u(x, t) is bounded even if it is un-
bounded for t=0.

The main result of the research is the following theorem.
Theorem. In both of the cases: 
– < λ < ≥0 1, p 1;
– < λ <0 p,

    – if 
−

< <
+

n 2
p 1,

n 2
 when >n 2;  

    – if < <0 p 1,  when n≤2,
the problem (1), (2) has the “instantaneous compactifica-
tion” property.

6. The proof of compactification property of the carrier of 
solution

In order to prove the Theorem about compactification of 
solutions’ support of the problem (1), (2) we need the well-
known Gagliardo-Nirenberg interpolation inequality, which 

will be given below, and the following lemma that is not a triv-
ial fact and, therefore, requires a strict mathematical proof. 

Lemma 1. If f(τ, s) is positive, increasing function, which 
satisfies the inequality

( ) ( )( ) ( )a βτ + τ + τ ≤ δ τf f , s , s f , s f , s ; (3)

– for each τ > τ > δ > a > β >0 0, s s , 1, 0, 0,  then:

( )τ ≡f , s 0;

– for all (τ, s) such that:

( )a
aτ > τ + τ

− δ0 0 0

1
f ,s ,

1
 ( )β

β> + τ
− δ0 0 0

1
s s f ,s .

1

Proof of Lemma 1.
Define the sequences as follows: 

( ) ( )a β
+ +τ = τ + τ = + τ =i 1 i i i i 1 i i if ,s , s s f ,s , i 1, 2, ...

Then from (3) we have

( ) ( )+ +τ ≤ δ τi 1 i 1 i if ,s f ,s .

After iteration, we obtain

( ) ( )+ +τ ≤ δ τj
j 1 j 1 0 0f , s f , s  

for each ∈j N.  Then: 

( ) ( ) ( )
( ) ( )

( )

a a a
+ − − −

a a

=

a a
a

=

τ = τ + τ = τ + τ = τ =

= τ + τ ≤ τ + τ ×

× δ ≤ τ + τ ⋅
− δ

∑

∑

j 1 j j j j 1 j 1 j 1 j j

j

0 i i 0 0 0
i 0

j
i

0 0 0
i 0

f ,s f ,s f ,s

f ,s f ,s

1
f ,s .

1

Similarly, it is possible to obtain the inequality:

( )β
+ β≤ + τ ⋅

− δj 1 0 0 0

1
s s f ,s .

1

From the fact that 

( )τ = → ∞j jlim f , s 0, j  

and as the sequences are uniformly bounded, the necessary 
result follows. Thus, the lemma is proved.

Proof of Тheorem.
For any numbers 

≤ τ < τ ≤ < < < ∞1 2 1 20 T, 0 s s ,  

we define by

( ) { }Ω = ∈ >n
1 1s x R : x s  – exterior of sphere;

( ) ( ) ( )τ
τ = Ω × τ τ2

1 1 1 1 2G s s ,  – exterior of cylinder;

( ) ( ) ( )τ τ τ
τ τ τ− =2 2 2

1 1 11 2 1 1 2K s , s s G s \ G s .
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Now let us fix 

τ > > ∆τ > ∆ >0, s 0, 0, s 0  

and introduce ( )η x,t  and ( )η1 x :  

η = 1 in ( )τ+∆τ + ∆TG s s ;  η = 0 in ( ) ( )τ×n TR 0,T \ G s ,

η =1 1  in ( )Ω + ∆s s ,  η =1 0  in n
 ( )Ω\ s .  

Suppose that 

≤ η ≤ η ≤ η ≤
∆ ∆ ∆i ik x 1x

c c c
0 , , .

s s s

Here η =k 0  if τ + ∆τ < <t T  and ∇η = 0  if > + ∆x s s.

Definition. An energy solution of (1), (2) is the function 
such that 

( ) ( ) ( )( )
( ) ( )( ) ( )( )+ + λ+

∈ ∩

∩ ∩ ×

n
2

1 n n
1 p p 1 1

u x,t C 0,T ;L R

L 0,T ; W R L R 0,T

and satisfies the integral identity:

( ) ( ) ( ) ( )

( ) ( )− λ−

− +

 + ∇ + = 

∫ ∫ ∫

∫ ∫ ∫

0

n n

0

i i
n n

T

0 0 t
0R R

T
p 1 1

x x 0
0 R R

u x,T v x,T dx u x,t v x,t dxdt

u u v u uv dxdt u x v x,0 dx,

where 

( )( ) ( )( )λ+ +∈ × ∩ ×n 1,1 n
1 p 2,2v L 0,T W 0,T .   

Note here, that the existence of solutions in the above 
sense is well known if ≤1 p  and < λ ≤0 p  – see [2–4].

Let 

( )
( )τ

τ = ∫
T

2
T

G s

E ,s u dxdt,  ( )
( )τ

+τ = ∫
T

p 1

T

G s

I ,s u dxdt.

If we show that for ( )∀τ > ∃ τ < ∞0 s :

( ) ( ) ( )= τ = τ + τ =T T TH H ,s : E ,s I ,s 0,

then (thanks to Lemma 1) we will obtain the Theorem. 
Thus, it is enough to show:

( ) → → ∞TH 0, s 0, s ,

( )a βτ + + ≤ µ a > β > < µ <H H , s H H, 0, 0, 0 1.  

Let us substitute += ηp 1v u  into the integral identity and 
integrate by parts

( ) ( )− +

+ λ+ +

−−

η +

 + ∇ + η = 

= + η + ∇ η η

∫

∫ ∫

∫ ∫

n

n

i i

1 2 p 1

R

T
p 1 1 p 1

0 R

T
p 11 2 p

t x x
0 R

2 u x,T x,T dx

u u dxdt

(p 1) (2 u u u u ) dxdt.  (4)

For the right-hand side of (4) we apply the Young’s in-
equality with e:

( )
( )( ) τ

+ λ++ +

Ω

η + ∇ + η ≤

≤ + =  

∫ ∫
T

p 1 12 p 1 p 1

s G s

T T 1

u dx u u dxdt

c I E : cR .  (5)

Let us apply the Gagliardo-Nirenberg inequality:

( ) ( )
Θ −Θ

a Ω β Ω γ
≤ ∇ 1

1, s , s
v d v v ,

which used standard notations of norm and indicators

( )
aa

a Ω
Ω

   
= = Θ − + − Θ γ > β >   a β γ  ∫

1

,

1 1 1 1
v : v dx , 1 , 1, 1

n

under a = β = + γ = λ +2, p 1, 1  and involve the Young’s in-
equality: 

( )
( )

( )

−ν

+

Ω Ω

 
≤ ∇ + λ + > >   

∫ ∫
1

p 12
0

s s

u dx c u u 1 dx, s s 0,  

where 

( )( )
( ) ( )

+ − λ
ν = <

+ + − λ
p 1 1

1.
2 p 1 n p

Integration leads to the inequality:

( )
( )

( )
( )τ

−ν

+ λ+

τ τ
Ω

 
Ψ − ν = ≤ ∇ +   

∫ ∫ ∫
T

1

T p 1 1T 2
,s

s G s

1 : u dx dt c u u dxdt.

We return back to the integral identity with the test 
function 

( ) ( )
( )

+ +

Ω

 
= η χ > χ = η >   

∫ ∫
l

t
p 1 2 p 1

l l
0 s

v u t , l 0, t u dx dt, t 0

and obtain

( )
( ) ( )

( )( )
( )

( )
( )

( )
τ

τ

+

λ++ + +

Ω

− +

χ =

 = χ η + η − η χ + 

 + ∇ η χ  

∫ ∫

∫

T

i
iT

l 1

12 p 1 p 1 2 p 1
l lt

s G s

p 1 p 1
x lx

G s

T

T u dx 2 u u t dxdt

2 u u u t dxdt,

from which and (5) we have:

( ) ( )+χ ≤ χl 1 l 1T c T R .

By the Holder inequality and integrating the latter in-
equality: 

( ) ( ) −δ
δχ ≤ χ l

l 1T c T R  for some > δ >l 0.

According to the definition of η(x, t) and previous 
computations, we obtain several inequalities, which are 
crucial:

( ) ( ) ( )τ+∆τ +∆ τΨ ≤ χ ≤ ΨT T
,s s l ,sl T l ,

( ) ( )τΨ − ν ≤ ∆ τ ∆τT
,s 11 cR s, s, , ,  (6)
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( ) ( ) ( )ν
−νχ ≤ χ ∆ τ ∆τ1 1 1T c T R s, s, , ,  (7)

( ) ( )−ν τχ ≤ Ψ − νT
1 ,sT 1 .

 
(8)

Now by the definition of the energy function ET: 

( ) ( ) ( )τ+∆τ +∆Ψ = τ + ∆τ + ∆ ≤ χT
,s s T 11 : E ,s s T .    (9)

Substitute (7) into (9) and using (8) and (6) we  
obtain that

( ) ( )+ντ + ∆τ + ∆ ≤ ∆ τ ∆τ1
T 1E ,s s cR s, s, , .   (10)

Note here, starting from this point we should distinguish 
three possible cases:

p=1;
p>1; 
0<p<1, 

as further (and final) proof course depends precisely on the 
value of the parameter p. 

Case p=1.
If p=1, then

( ) ( )τ = τT TI , s E , s .  

So, the proof is trivial, because it immediately fol- 
lows that:

( ) ( )
( ) ( ) ( )

∀τ > ∃ τ < ∞ = τ =

= τ + τ = ⋅ τ
T

T T T

0 s : H H ,s :

: E ,s I ,s 2 E ,s ,

Thus, by (10) and thanks to Lemma 1 we have the result 
of Theorem.

Case p>1. 
Now let us a consider nontrivial case, when the param-

eter is greater than 1, i. e. p>1. Put in the integral identity 

a = + β = + γ =p 1, p 1, 2.

After integrating in t, using the Holder inequality 

( )

( )τ+∆τ

θ −θ
+

τ+∆τ +∆
+∆

τ + ∆τ + ∆ ≤

   + ≤ ∇ Ψ         
∫

1
1

T

T

1
p 1 T

,s s

G s s

I ,s s

p 1
c u dxdt ,

2
  (11)

where 

−
θ = <

+ + −1

n(p 1)
1.

2(p 1) n(p 1)

Inequalities (6)–(8) under 

+
=

1 p
l

2
 and δ = − ν1  

lead to the following correlation

( )
+

− +ν
τ+∆τ +∆ τ

+ Ψ ≤ Ψ − ν  

1 p
T T 2 1

,s s ,s 1

p 1
c 1 R .

2

Using the result of (10) to the last estimate we obtain

+
+ν

τ+∆τ +∆
+ Ψ ≤  

1 p
T 2

,s s 1

p 1
cR .

2

If we apply the latter inequality to the ratio (11), then 

( )

( ) ( )
+ντ + ∆τ + ∆ ≤

ν − λ− ν = − θ + ν = > ν   − λ

11
T 1

1 1

I ,s s cR ,

pp 1
1 .

2 1
  (12)

Add (10) and (12), use the definition of the function 1R ,

( )

( ) ( )( )
( )

( )( )
( )

( ) ( )( )
( )( )( )

( )( )
( )( )( )

ν ν

τ τ
τ +ν +ν

ν ν

+ +ν + +ν

τ + ∆τ + ∆ ≤

 ∆ τ ∆ τ ≤ ∆ τ + + ∆τ ∆τ  
 ∆ τ ∆ τ + ∆ τ + ∆ ∆  

1

1

1

1

T

T T

0 T 1 1

s T s T

0 s T 1 p 1 1 p 1

H ,s s

E ,s E ,s
c E ,s

I ,s I ,s
c I ,s ,

s s

where

( ) ( ) ( )τ∆ τ = τ − τ + ∆τf ,s : f ,s f ,s ,
 

( ) ( ) ( )∆ = τ − τ + ∆sf t,s : f ,s f ,s s .

Now let us fix 

( )( )( )( ) ( )( )
ν ν

+ν+ ν+∆ = τ ∆τ = τ 1p 1 1
T Ts I ,s , E ,s .

As Е and І are monotone, we come to the inequality

( ) ( )( ) ( ) ( )
νν

+ +ν+ν
 

τ + τ + τ ≤ µ τ   
1 p 11

T T T 1 TH H ,s, ,s H ,s H ,s .   (13)

In case 0<p<1 it is easy (using the same approach) to 
obtain an inequality similar to (13), which is to complete 
a series of computations of our proof, but, of course, with 
another index, namely,

( )ν − λ
ν = < ν

− λ1

p
.

1

7. The discussion of the result about the behavior of  
the carrier of solution 

The results, for example, [7, 8, 11] have been obtained for 
non-negative solutions and with the assumption on the ini-
tial function: either this function tends to zero when → ∞x ,

 or has a majorant. To sum up, note here, that if the initial 
function does not have a monotone majorant, then even for 
the simplest equation such as 

= − < <p
t xxu u u , 0 p 1

we cannot give an answer about the behavior of the solution. 
This fact prompted the author to continue earlier research. 
Furthermore, we emphasize here that the authors [5, 10] and 
others applied the maximum principle for investigations. 
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But, unfortunately, for equations of higher order, we have no 
such principles. Thus, an actual problem arises, which was 
solved in this work – to adapt a more universal approach to 
the study of (1), (2), which allows to analyze the behavior of 
the solution in more complex and common situations.

8. Conclusions

As a result of the research:
– relationships, which contain L2, Lq+1 and Lλ+1 norms of 

solution were found;
– the functional dependence of the kind of (3) by apply-

ing the Young’s, Holder, Gagliardo-Nirenberg inequalities 

to integral estimates was obtained; analysis of the ratios (3), 
(10), (13) was done;

– it was proved that a carrier of the solution of the prob-
lem (1), (2) is bounded for t>0.

Note here that an interesting and important (but sepa-
rate) problem that has not been realized in this investigation 
is to estimate the size of the support. On the issue of finding 
the estimates of a carrier of solution, see the works [15–17].
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