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The paper discusses the applicability of the two main methods for solving the linear regression (LR) problem in the presence of multicollinearity — the OLS and the
ridge methods. We compare the solutions obtained by these methods with the solution calculated by the Modified OLS (MOLS) [1, 2]. Like the ridge, the MOLS
provides a stable solution for any level of data collinearity. We compare three approaches by using the Monte Carlo simulations, and the data used is generated
by the Artificial Data Generator (ADG) [1, 2]. The ADG produces linear and nonlinear data samples of arbitrary size, which allows the investigation of the OLS
equation's regularization problem. Two possible regularization versions are the COV version considered in [1, 2] and the ST version commonly used in the literature

and practice. The performed investigations reveal that the ridge method in the COV version has an approximately constant optimal regularizer (7»,(13’;)“ 0.1) for

any sample size and collinearity level. The MOLS method in this version also has an approximately constant optimal regularizer, but its value is significantly smaller

(7‘1(\%25 ~0.001). On the contrary, the ridge method in the ST version has the optimal regularizer, which is not a constant but depends on the sample size. In this

case, its value needs to be set to x("" 0 0.1(n—1). With such a value of the ridge parameter, the obtained solution is strictly the same as one obtained with the

ridge
COV version but with the optimal regularizer 7»,(,3;2 =0.1 [1, 2]. With such a choice of the regularizer, one can use any implementation of the ridge method in all

(ort) _

known statistical software by setting the reqularization parameter ?»,idge =0.1(n—1) without extra tuning process regardless of the sample size and the collinearity
level. Also, it is shown that such an optimal ridge(0.1) solution is close to the population solution for a sample size large enough, but, at the same time, it has some
limitations. It is well known that the ridge(0.1) solution is biased. However, as it has been shown in the paper, the bias is economically insignificant. The more
critical drawback, which is revealed, is the smoothing of the population solution — the ridge method significantly reduces the difference between the population
regression coefficients. The ridge(0.1) method can result in a solution, which is economically correct, i.e., the regression coefficients have correct signs, but this
solution might be inadequate to a certain extent. The more significant the difference between the regression coefficients in the population, the more inadequate
is the ridge(0.1) method. As for the MOLS, it does not possess this disadvantage. Since its regularization constant is much smaller than the corresponding ridge
regularizer (0.001 versus 0.1), the MOLS method suffers little from both the bias and smoothing of its solutions. From a practical point of view, both the ridge(0.1)
and the MOLS methods result in close stable solutions to the LR problem for any sample size and collinearity level. With the sample size increasing, both solutions
approach the population solution. We also demonstrate that for a small sample size of less than 40, the ridge(0.1) method is preferable, as it is more stable. When
the sample size is medium or large, it is preferable to use the MOLS as it is more accurate yet has approximately the same stability.
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TusHenKo O. I, Pe3Hik €. B. [lpakmuyHe piweHHA npobaemu myasmukoniHeapHocmi: OnmumansHuii memod pidx-peapecii
ma moducpikosaHuli memod HalimeHwux Keadpamie

Y yiti cmammi posensdaemoca npudamuicme 080X 0CHOBHUX Memodie 0715 supiwieHHs npobaemu niHiliHoi peapecii (LR) 3a HasgHocmi mynbmukoniHeapHocmi,
a came OLS, ma ridge-memody nopigHaHo 3 piweHHAMU ModugikosaHozo memody OLS (MOLS) [1; 2], akuli, s i ridge, 3a6e3neyye cmabinbHe pitueHHs Ha 6ydb-
AKOMY pigHi KoniHeapHocmi daHux. MopigHAHHA nposedeHo memodom MoHme-Kapso i3 8UKOPUCMAHHAM Wmy4YHo20 2eHepamopa 0aHux (ADG) [1; 2], akuii
2eHepye niHitiHi 8ubipku daHux 6ydb-AKo2o po3mipy. BukopucmarHa ADG dossonae Ham docnidumu npobaemy peaynapusayii pisHaHHA OLS. byno ussneHo, wo
moxnuei dai sepcii peaynapusayii: eepcis COV, aka byna 3anponoHosaHa ma docaioxeHa 6 [1; 2], ma sepcis ST, AKa 3a38u4ali BUKOPUCMOBYEMbCA 8 Aimepamypi
ma npaKkMuYHUx peaniaayiax. 3anponoHo8aHi docnidxeHHs nokasyoms, wo y eepcii COV ridge memod mae npubnausHo nocmitiHuli onmumansHuli pecynamop

t . . . . ™ . ™ v v
(?»,(;{’ge) ~0.1) 0717 6ydb-AK020 06cs2y 8ubipku ma pieHa KoniHeapHocmi. Memod MOLS makox mae y uili eepcii npubnusto nocmiliHud onmumansHuli peayns-
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mop, asne 8iH 3HAYHO MeHWULl 30 3HAYEHHAM (xg%zs ~0.001). ¥ moli xe vac y 302an6Ho8xUSAHiIl 8epcil ridge-memody Ham nompiber onmumanbHuli peay-

namop xr(,.”;;): 0.1(n—1), AKull 3anexums 8i0 0bcazy subipku n i He € KoHcmaxHmoto. Ham 6yno nokasaHo 8 pobomi, wo eepcia ST, AKa BUKOPUCMOBYEMbCA AK

MpasusI0 Ha NPAKMUYI Pa3om i3 ridge-Mmemodom, Mpu BUKOPUCMAHHI OMMUMAIbHO20 Napamempa xfg’f): 0.1(n—1), 0ae cmpozo me came piweHHs, wo i COV
ge
8epcia xpebma 3 oNMUMAsnbHUM pe2ynSmopom )»,(,fjge) =~0.1 [1, 2]. Lle do38011s€ 8uKopucmosysamu koou ridge-memody y ecim 8idomomy cmamucmu4Homy npo-
2pamHomy 3abe3neyeHHi, BCMaHo8AIKYU napamemp pe2ynapusayii x,(;’j”) =0.1(n—1) 6e3 b6ydb-AK020 NPoyECy HaNAWMYsaHHs, He3aneHHO 8i0 0bcAzy 8ubip-
ige
Ku ma pieHs KoniHeapHocmi. Mu maKox MoKa3yemo, wio make onmumarsHe piwerHs ridge(0,1) Habauxaemsca 00 piwieHHs 8 nonynayii 019 docume enuKo2o
o06c¢sey 8ubipku, ane 00Ho4acHo mae Oeski npobaemu. Toli pakm, wo memod ridge(0,1) dae 3miweHHs, sidomul, ane ye 3miwjeHHs, AK 6y/10 MOKA3aHo 8 pobomi,
€ eKOHOMIYHO He3Hauywum. Halisaxcausiwum guseneHuM HeOONIKOM € 321a0M#Y8AHHA MOMyAAYiliHO20 pilueHHA: ridge-memod 3HAYHO 3MEHWYE PI3HULK MK
KoegiyieHmanmu pezpecii momyasyii. Omxe, ridge(0,1) moxe damu ekoHOMiYHO NPasubHUL (3 NPABUALHUMU 03HAKAMU), G/1€ NEeBHOK Mipoto HeadeksamHuli
po3e’a3ok. Headeksamuicme ridge(0,1) susensemosca mum binbuue, yum binbuwia pisHUUS Mix KoeiyieHmamu pezpecii 8 nonyasyii. Lum Hedonikom MOLS npak-
MUYHO He 807100i€, OCKiNbKU 0718 Hb020 KOHCMAHMA peayaspu3ayii mae Habazamo meHuwe 3HaverHs (0,001 npomu 0,1). Yepe3s ye memod MOLS npakmuyHo
Mano CMPaxoae AK 6i0 3MilyeHHs, mak i 8i0 32na0HY8AHHA CBOIX piweHb. 3 MPAKMUYHOI MoyKu 30py, 0budea memodu, ridge(0,1) ma MOLS, daromb micHi
cmabineHi piwerHa npobnemu LR 0na 6ydb-AKo2o obcazy subipku ma pigHa KoniHeapHoCM, AKi HabAU#aMbCA 00 piweHb 8 nomynAuii 3i 36inbweHHAM obcazy
8uBIpKU. Y cmammi makox noKa3aHo, wio 014 manux eubipok meHwe 40 nepesaxcHo suxkopucmosysamu ridge(0,1), ockineku it € binbw cmabiabHum. [as

cepedHix ma eenuKuUX 3paskig nepesaxcHo sukopucmogysamu MOLS, ockinbKu 8iH € binbw moYHUM i3 npubau3Ho 00HaKosok cmabinsHicmio..

Kntouosi cnoea: mynbmuKosiHeapHicmb, eKOHOMIYHA KopeKmHicmo, eKoHomiyHa adeksamHicms, modudikosaHe npasuno Kpamepa, modudgikosare OLS,
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Preamble. It is worth recalling that in practice, re-
searchers continue using only the OLS to solve the LR prob-
lems regardless of the VIF factor’s value. They only check the
OLS solutions obtained just for economic correctness (only the
correctness of the regression coefficients signs). If the OLS so-
lution is not correct, it is simply not taken into further consid-
eration. Because of that, a lot of valuable information is lost.

As the authors discovered in the previous works [1; 2],
the actual situation might be much worse. The point is that ec-
onomically correct solutions can be inadequate to the solutions
in the population. That is, an approximate OLS solution may be
economically correct but quite far from the true solution.

Thus, to date, only the OLS solution with correct signs is
the valid approximation of the true solution. Due to this situa-
tion, the following two problems arise immediately: 1) discard-
ing the data, which one could use correctly; 2) considering the
obtained economically correct OLS solution as the true solu-
tion, although it might be far enough from the solution in the
population.

This situation has lasted for many decades, even though
in 1959-62, A. E. Hoerl proposed a powerful method to ap-
proximate the LR problem solution under near-collinearity,
namely the ridge method. However, the practical application
of this method turned out to be limited. It happened due to
the significant dependence of the solution on the value of the
regularization constant. The search for the optimal regulariza-
tion constant continues to this day yet without noticeable suc-
cess. The investigations carried out in this work have shown

that under the commonly used formulation of the regulariza-
tion problem for the OLS equation, the optimal value of the
regularization parameter is not a constant but is proportional
to the sample size.

Also, it has been found that the formulation of the OLS
equation regularization method is of fundamental importance.
Therefore, the paper considers two formulations of the OLS
equation regularization: the COV version (the covariance ma-
trix is used) and the ST version (the standard formulation com-
mon in practice and theory up to date).

The paper demonstrates that an approximately constant
value of the optimal regularization parameter is observed only
in the COV version of the ridge method and has a value of
about 0.1. The approximate optimal regularization parameter
value of the OLS equation in the ST version equals 0,1 (n -1),
where 7 is the sample size. Herewith, a problem in the COV
version with the regularization parameter of 0.1 and a cor-
responding problem in the ST version with the regularizer of
0,1 (n —1) have coinciding solutions for any sample size and
a collinearity level.

Introduction. From a mathematical perspective, an LR
problem is equivalent to a curve-fitting problem [3-8]. The
OLS solves this problem impeccably.

The OLS approach is usually not suitable for obtaining
an economically adequate solution to the LR problem [9-14].
The OLS can give an adequate solution to the economic regres-
sion problem if the regressors are near-orthogonal. Unfortu-
nately, this is not the case in practice.
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The main drawback that prevents the OLS solution from
being adequate to an economic problem is the near-collinearity
of regressors [9-20]. With the VIF factor increasing, the vari-
ability of the OLS solution drastically increases. This issue pre-
vents from getting an adequate economic solution to the re-
gression problem in practice.

There exist different remedies dealing with ill-condi-
tioning and near-collinearity, including various regularization
methods, ridge regression [12], omitting variables, grouping
variables in blocks, collecting additional data, and so on; see
[5; 10-22] among others. However, these remedies may be
time-consuming, costly, impossible to achieve, or controver-
sial [23]. Also, the diagnostic tools that signal the presence
of near-collinearity are crucial. However, the authors agree
with [24] that no signal of multicollinearity exists at all be-
cause «multicollinearity is a matter of degree rather than one
of kind».

Many years of efforts did not yield any results in the
search for a critical level of near-collinearity. It seems that
A. C. Harvey in [24] was right that there is no such a critical
level at all and the influence of near-collinearity at an OLS solu-
tion is a continuous process that depends on many parameters.
This issue is also confirmed in [1; 2] and this paper.

Despite the theoretical warnings about the inadmissibil-
ity of using the OLS in the presence of near-collinearity of any
level, this technique is still in use in practice, in economic and
other studies, with attempts to reduce somehow the level of
collinearity. As for the appearance of incorrect signs in the OLS
solutions, that is, when solutions have no economic (in gen-
eral, physical) sense, this phenomenon, as shown in [1], is con-
nected with the fundamental property of nonsingular square
matrices.

The possible economic inadequacy of OLS solutions,
given that the solution has the correct signs (i.e., is economi-
cally correct), has been investigated in [2] and in the current
paper. It has been shown that large enough random errors in
solutions may cause this effect. Numerical studies of the vari-
ability in the OLS, MOLS, and ridge solutions allow us to state
that economic inadequacy occurs when the coefficient of varia-
tion (CV) of a solution is larger than 10% [2].

In this paper, we investigate the problem of the appear-
ance of the incorrect and inadequate OLS solutions to the LR
problem in the presence of multicollinearity and compare the
OLS with the wide known ridge method and the new, provid-
ing a stable solution, Modified OLS (MOLS) method proposed
in [1;2].

The MOLS, as well as the ridge method, is an approxi-
mate method that uses the well-known Tikhonov’s regulariza-
tion principle and a new method of solving the regularized OLS
equation called in [1; 2] the Modified Cramer Rule.

The Artificial Data Generator (ADG) proposed in [1; 2]
allows generating data with different levels of regressors’ col-
linearity. Such data modeling helps to compare the three meth-
ods mentioned above to determine their applicability in real
economic studies.

It worth mentioning that all considerations regarding the
applicability of the OLS, ridge, and MOLS methods for optimal
values of the regularization constant cannot be rigorously theo-
retically proven. Therefore, to demonstrate the ideas, we use

the Monte Carlo simulations for linear and nonlinear data gen-
erated by the ADG. For this purpose, we use ADG to generate
both linear data with a priori equal or different regression coef-
ficients in the population and nonlinear data with and without
autocorrelation.

An essential feature of the ADG is the opportunity to es-
timate the population regression coefficients due to the OLS
consistency property. For some values of the ADG parameters,
we can estimate the population solution with any accuracy us-
ing a sample size large enough, making it possible to compare
all the methods in terms of both the bias and accuracy of their
solutions for any sample size.

Regularization of the OLS equation.

Given the data generated by the ADG, we investigated
the regularization problem of the ill-conditioned standardized
OLS equation for beta-coefficients:

Y=Y B X, +e,
j=1

where {Y,X} is the standardized data; {y,x} — the observed
data.

There are two methods to regularize the OLS equation:
first, by the standard method (ST version) in the generally ac-
cepted form

(X’X+A)B=XY, 1)

second, by using the covariance matrix (COV version [1; 2]) in
the form

(LX’XHJ)B -1 xy. 2)
n—1 n—1

Here, we demonstrate that both the COV version of
the ridge method and the COV version of the MOLS have ap-

proximately constant optimal regularizer: xfgge) =(0.1 forthe
ridge method, and 7\’5\21(7)25 =~0,001 for the MOLS, which im-
plies that in practice a researcher can use only one regularizer

(xr(lff;e) ~0.1) in all cases without tuning for the ridge method

and only one regularizer (7‘1(\%25 ~0.001) for the MOLS, and
these regularizers are approximately optimal and provide rea-
sonable accuracy.

As for the commonly used ST version, the optimal regu-
larizer in this case is

At = (n=DA).

For any computational environment one can use the pro-
gram implementation of the ridge method by setting an opti-

mal regularization constant to 7\.,(,.';’;) =0.1(n—1) for any data

sample and can obtain the estimated population solution with
a good enough accuracy.

There is also considered here more one serious drawback
of the regularization at all, excluding the well-known bias. The
investigations have revealed that any regularization procedure
tends to smooth the LR solution. The larger the regularization
constant, the less the difference between the regression coef-
ficients unequal in the population (and the larger is the bias).
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If all regression coefficients are equal in the population,
the ridge(0.1) method (with optimal regularizer), for example,
also gives all the regression coefficients equal but slightly less
in absolute value. If the regression coefficients are different
in population, then, in addition to the general bias, there the
smoothing between the regression coefficients arises. In this
case, the larger coefficients decrease in absolute value, and the
smaller ones increase, but the sum of the beta coefficients prac-
tically does not change.

Change in the relationship between the regression co-
efficients leads to incorrect interpretation of regressors’ influ-
ence on the response, that is, to the inadequacy of the econom-
ic regression problem’s solution. This effect is an inherent part
of the regularization process, and the larger the regularization
constant, the more significant it is. Then, for the ridge method

. . i (opt)~ .
with the optimal regularization constant (A dee ~0.1), this
effect is much more significant than for the MOLS with the

optimal regularization constant lg;‘ggs ~0.001 that we will
demonstrate further.

First, we generate data with a low level of collinearity
(VIE~ 20), for which an OLS solution converges fast in prob-
ability to a population solution with the sample size increasing.
For such data, we can take, for instance, the OLS solution for
a sample of size 107 as the population one.

Having in hand the population solution, we investi-
gate the bias and standard deviation of the OLS, MOLS, and
ridge(0.1) solutions for any sample size (1) and collinearity level
(VIF). By varying these parameters, we can investigate both the
stability of the methods and the economic adequacy of the so-
lutions they provide. Note that we will conduct these studies
using the standardized (normalized) data. It is connected with
the interesting behavior of the standardized regressor coeffi-
cients (B j). For example, the sum of beta-coefficients moduli is
close to one for all cases observed. Besides, for regressors with
the same residual errors in partial regressions with a response,
the beta coefficients are the same, regardless of the law of their
linear influence on the response. If for every simple regression
with a response, the residual errors are approximately similar,
and the beta coefficients are different, this implies some auto-
correlation in data. As is shown later, the existence of autocor-
relation in data greatly impairs the adequacy of the OLS solu-
tions for finite samples.

Linear and nonlinear data simulation with the ADG.

The main principles of simulating the linear data by the
ADG are outlined in [1; 2]. However, the very definition of the
data linearity concept has not been given. By itself, data cannot
be linear or nonlinear. However, one may define data linearity
when the data is used in a simple LR problem. If the LR prob-
lem is being solved, given data {y,x} :

y=b,+bx+e,
one can calculate the b-coefficients estimates (b,,b,) and the
linear trend function y=b,+b,x. Then one can define the
observed data as linear if the residual € =y—y follows the

normal distribution with a zero mean, N(0,67). For the mul-
tivariate regression problem, each regressor can be checked for

linearity either theoretically or graphically to make appropriate
economic decisions.

As we will show below, the point is that the presence of
regressors that are not close to linear leads to a significant de-
creasing in the corresponding regression coefficients in modu-
lus. The researcher has to decide whether to keep or discard a
regressor that contributes a little to the response, even though
its presence remarkably changes the LR problem solution. Fur-
ther on, we will touch on some variants of a linear data genera-
tion used for investigating the applicability of the OLS, ridge,
and MOLS in practical research.

In [1; 2], we only considered strictly linear regressors
with the same statistical parameters, which should give the
same regression coefficients and hence the same contribution
in the response. The latter follows from the very principle of
data generation. We proceed in the ADG from the specifica-
tion of the response in the form of a pseudo-random vector:

y=randn(n,1) in the MATLAB notation. The regressors (x)
we generate with the aid of the simple regression model as

xj=k;l(y+dj0£8), (3)

where k]. sets the law of nonstochastic linear influence of a re-
gressor on the response: y = ij ;5 € sets the stochastic impact

of unaccounted factors, which are set as € =randn(n,1) with
the amplitude d;0t . If we write (3) as

y=kx, +d,o-randn(n,1), (4)

we can see that dj0(~randn(n,1) sets a residual error in the

simple regression of y on % The multiplier d,o in (3) sets the
random component in % incoherent to y. The first component
in (3) is coherent to y and sets the economic law of influence of
the regressor ¥, on the response.

Note that with a decrease in «, the incoherent compo-
nent also decreases in amplitude, leading to an increase in the
level of near-collinearity of the regressors (VIF) and the equal-
ity of the beta-coefficients in the population, even though d-
parameters may be different.

In the code, we set: k' = tan(e _ .ngoj , where 6,
J 7180

is the angle in degrees between the trend and OY axes in the
simple regression x;0ny. So, for 91 =1°, for example, we have
a significant influence of x;on y in the regression y on X for
ei =890, for instance, we have a negligible effect of x; ony
in the regression y on x;. If we take 6, >90°, the sign of the

regression coefficient changes, and so on.

If a tends to zero, the regressors x; become closer to each
other, which increases their collinearity, and so their VIF fac-
tor. The multiplier d, allows us to adjust the level of influence
of unaccounted factors on the response for each regressor for
not very small a (for very small o all o are approximately zero,
and a change in dj does not influence the solution, if d/. is not
too large).

So, in the ADG model (3), the multicollinear regulator
and the multiplier d;are connected such that the difference be-
tween the regressors diminishes as a tends to zero. This means
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that with an increase in the level of a near-collinearity (VIF)
in the ADG, the regression coefficients b, in the linear model
become the same in the population. In this work, we use this
fact to check the adequacy of the method for solving the LR
problem in the presence of a near-collinearity.

Particularly, we further use this to investigate the ap-
proximation of the population solution under the presence
of a near-collinearity by the OLS solution with an increase in
a sample size. This question is of fundamental importance for
studying the methods of solving the LR problem, given the
near-collinear data. Thus, for the data generated by ADG, if
the OLS solution to the LR problem stabilizes with sample size
increasing and does not change, say for n > 10%, then one can
consider the OLS solution obtained for n > 10° or n > 107 as an
approximate solution in the population. This is exactly how we
estimate the population solution in this work.

The approach mentioned above allows us to evaluate
both the bias and adequacy of the LR problem solution ob-
tained for a finite sample size. Multiple repetitions of solutions
for data extracted from the same population (ADG) allows us
to determine the coefficients of variation (CV) of solutions for
different methods depending on the sample size, which helps
the researcher to decide on the applicability of the results ob-
tained by the chosen method in practice. Such a decision will
be correct only for strictly linear data. Therefore, before practi-
cally solving the LR problem, it is necessary to check the data
linearity, at least graphically. The influence of the data nonlin-
earity is very significant, and we will discuss it below.

The choice of parameters in (3) determines the solution
to the LR problem in the population. So, if d. and k; in (3) are

j

the same, it is obvious that all regression coefficients will also be
equal in the population. This case was investigated in [1; 2]. We
used there the COV version (2) of the regularized OLS equa-
tion and compared solutions of the OLS, the ridge(0.1) method
with regularization constant 0.1, and the MOLS with regular-
ization constant 0.001. There, we also used the OLS solution for
a large sample of size n > 10° as the population solution, which
helped to determine the bias for each method at different val-
ues of the sample size and the coefficients of variation (CV) of
the solutions.

The use of the OLS solution for a large sample as an es-
timate of the population solution is based on the well-known
property of consistency of the OLS estimators, see, for exam-
ple, [9]. When simulating regressors with the same statistical
characteristics, the OLS solutions did tend to a certain limit,
and for samples larger than n ~ 10% did not practically change.

To demonstrate the OLS, MOLS, and ridge solutions
properties in other different cases, we give below their solu-
tions simultaneously for the COV version of the regularized
OLS equation (2). The MOLS algorithm for the COV version
(2) was described in [1; 2]. Instead of using the ridge(0.1) in the
COV version (2), one can use any program implementation of
the ridge method (ST version) with the regularization param-
eter \ = 0.l(n —1) for any sample size # and the collinearity
level.

Some peculiarities of the OLS solutions.

Everyone knows that the OLS solutions to the LR prob-
lems can be incorrect if the regressors are collinear to some
degree. It is convenient to measure the degree of collinearity of

the data by the VIF indicator. The question of at what value of
the VIF the OLS solutions cannot be used remains unexplored
to date, apart from the cases when the method gives incorrect
solution signs.

The latter also raises the question: if the OLS solution is
economically incorrect, can the experimental data still be used
for scientific purposes, or should they simply be thrown away?
The answer to the last question is usually the advice to increase
the experimental dataset. In reality, this is not always possible,
and even if it is possible, the question remains to what extent
the dataset should be increased.

To clarify these issues, we consider OLS solutions’ fea-
tures and compare them with solutions of the ridge method and
the MOLS. As the first step, we consider solutions to the LR
problem with four regressors on strictly linear data generated

using the ADG with equal parameters d j=1 and 0 j =1°.

In this case, all the population beta-coefficients will be = 0.25
(~1/m, for m = 4). With the aid of the 10* times the ADG data
repeating, we estimate the stability and adequacy of all three
methods’ solutions for small and large samples of various
VIFs.

For n =103and a = 0.2 (VIF ~ 20), i.e. average sample
sizes in the absence of near-collinearity (for strictly linear re-
gressors), we obtain for one sample: the OLS beta-coefficients
can be [0.2477 0.2587 0.2517 0.2516]; for the ridge(0.1) so-
lution: [0.2448 0.2478 0.2459 0.2458]; for the MOLS(1073)
solution: [0.2497 0.2561 0.2519 0.2520]. As we can see,
all solutions are close to the population one (= 0.25). Note that
all the values of the beta coefficients obtained by the ridge(0.1)
method are less than the corresponding coefficients in the
MOLS because the regularization constant in the ridge method
is larger than that in the MOLS. However, the ridge(0.1) bias is
small enough.

More precisely, the bias of the ridge(0.1) method solutions
can be calculated by resampling (Tables 1, 2). In the tables, the
coefficients of variation (CV) are also shown for all three meth-
ods. (The population solution estimation with the aid of the
OLS solution for 7 = 10° is B =[0.2527; 0.2524; 0.2521; 0.2526];
for n=107is P = [0.2524; 0.2524; 0.2524; 0.2525)).

Solutions with a coefficient of variation less than 10% can
be considered adequate at the 5% significance level [1; 2]. Table
1 shows that for linear data, the OLS solutions can be consid-
ered adequate for sample sizes larger than 103, For sample sizes
less than 30, all methods give an inadequate solution. When
n = 30, only the ridge(0.1) method gives adequate solutions.
When data are linear, and the regression coefficients are equal
in the population, the ridge(0.1) method is the best: it is most
stable and gives a small enough bias. For more details, see pa-
pers [1; 2].

Modeling nonlinearity with the ADG and analyzing solu-
tions to the LR problem with nonlinear data will be considered
in this paper after discussing the optimality of the ridge(0.1)
and MOLS solutions.

Ridge and MOLS optimality.

The main problem of solving the OLS equation by the
regularization method is to determine the optimal value of the
regularization constant, at which the regression coefficients are
stable and sufficiently close to the corresponding values in the
population.
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Table 1
Means and CVs of beta-coefficients, VIF ~ 20, 10*-repetitions
n n=103 n=30
betas B, B, B, Bs i B, Bs Bs
The OLS solutions in the absence of collinearity.
mean 0.2526 0.2523 0.2524 0.2524 0.2516 0.2525 0.2535 0.2524
CV(%) 5.61 5.55 549 5.51 36.01 35.69 36.06 35.93
The ridge(0.1) solutions in the absence of collinearity.
mean 0.2461 0.2461 0.2461 0.2461 0.2459 0.2461 0.2465 0.2461
CV(%) 1.59 1.58 1.56 157 9.53 9.48 9.54 9.50
The MOLS(0.001) solutions in the absence of collinearity.
mean 0.2525 0.2523 0.2524 0.2524 0.2519 0.2524 0.2532 0.2523
CV(%) 333 3.29 3.26 3.27 18.89 18.75 18.85 18.79

Many theoretical works are devoted to this problem, see,
for example, [20; 25; 26], from which it can be concluded that
there is probably no optimal regularization constant for the
standard regularization scheme (ST version) of the OLS equa-
tion.

This article investigates this problem using the linear
data simulation with the aid of the ADG. Considering that we
know with sufficient accuracy the solution in the population,
we directly investigated the second norm of the difference be-
tween the LR-solution for a sample of size # and the solution
in the population.

For the ADG sampling with equal parameters d i= 1
and 6]. =1° we solve the COV version of the regularized OLS
equation (2) by the ridge(0.1) method with various values of the
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regularization constant \ for different sample sizes (1) and dif-
ferent VIFs and calculate the Euclidean norm of the deviation
of the sample solution from that of the population (deviation
norm in Figures (1, 2) below).

Figures (1, 2) demonstrate the general situation: the op-
timal value of the regularization parameter exists but depends
on both the sample size and VIF; in principle, for each sample,
it is possible to find the exact value of the optimal regulariza-
tion parameter, but from the figures and more detailed studies
it can be concluded that the deviation of the exact optimal pa-
rameter from the value 0.1 insignificantly changes a solution to
the LR problem for any sample.

A similar situation also occurs for the MOLS: the exact
value of the optimal regularizer changes for each sample in
the vicinity of 0.001, but the solution remains practically un-
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Figure 1. Deviation of ridge(0.1) solutions from the population one
for not very strong collinearities (o. = 0,05) depending on
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Figure 2. Deviation of ridge(0.1) solutions from the population one
for strong enough collinearities (0. = 0,01) depending on 1

changed. Detailed studies of this problem have shown that in
practice, it is quite possible to use in all cases the ridge method
in the COV version with the regularizer equals 0.1 (ridge(0.1)),
and the MOLS method with the regularizer equals 0.001.

Linear regressors with a different variance of the noise.

It was shown above that the ridge(0.1) method gives ex-
cellent solutions for linear regressors with the same parameters
0, and d;. The stability of the method is higher than for MOLS
due to a larger regularization constant (0.1 vs. 0.001), and the
bias is not significant for economic research. Let us now con-
sider a situation in which the regressors are also strictly linear,
but with different laws of influence on the response (different
9].) and the same amplitude of the normal noise in regressors
(the same dj).

To demonstrate the quality of ridge(0.1) solutions, we
consider, as above, a small sample (n = 30) and show the coef-
ficient of variation (CV) for all three methods. Let us set for
this: 0 = [89°;1°%89%1°],d = [1;1; 1; 1], @ = 0.2 in (3). Note that
for a = 0.2 (VIF ~20), the collinearity is practically absent,
and the OLS gives a correct and adequate solution to the LR
problem, with which we compare the MOLS and ridge(0.1)
solutions.

With such parameters, the b-coefficients in the popula-
tion will be: [small; large; small; large] according to the 6-values;
the beta-coefficients will be the same (=0.25) as we affirmed
above.

Since we do not know the regression coefficients in the
population, we find their estimate by the OLS solution with
n =10%and 107. For bs we have for n =10°:

b = [0.1491(b,); 0.0481; 14.1879; 0.0482; 14.1721];
for betas we have: 3 = [0.2522; 0.2525; 0.2528; 0.2523].

For n = 107, we have for bs:

b =[0.1493(b,); 0.0043; 14.1981; 0.0043; 14.1792];
for betas we have: § = [0.2524; 0.2526; 0.2523; 0.2524]. It is
clearly that the beta-solutions in the population are the same
and close to 0.25.

In practice, the researcher is interested in the statisti-
cal properties of an LR problem solution on a one-sample of
a specific size. To date, the researcher cannot obtain such
information since this requires a large set of samples of a
given size from the population, and it is impossible to obtain
such one.

In this work, due to the program for generating samples
with a given property of solutions in the population (ADG), we
can draw a sample from the population an unlimited number
of times. This allows us to evaluate the statistical characteristics
of a solution to the LR problem by the chosen method (OLS,
MOLS, or ridge (0.1)) for data of a certain type, for example,
for strictly linear data, for near-linear data, or, in general, for
nonlinear data.

First, consider the statistical characteristics of solu-
tions to the LR problem for sufficiently small strictly linear
samples by various methods (OLS, MOLS, and ridge (0.1)). For
n =30, a=0.2, the same d-parameters (all ones), and different
0-parameters (0 = [89°; 1° 89°; 1°]), we have the following solu-
tions’ means and their CVs using 10* repetitions. Mean beta-
coefficients:

OLS: [0.2516; 0.2525; 0.2535; 0.2524;
MOLS: [0.2519; 0.2524; 0.2532; 0.2523]; ®)
Ridge(0.1): [0.2459; 0.2461; 0.246S; 0.2461].

Coefficients of variation (CVs):

OLS: [36.01; 35.69; 36.06; 35.93];
MOLS: [18.89;18.75; 18.85; 1879]; (4
Ridge(0.1): [9.53; 9.48; 9.54; 9.49].

Comparing with the case of identical laws of influence of
regressors on the response (equal 0. in Table 1), we see that the
bias and the stability of all methods have not changed. Again,
the ridge(0.1) method is the best despite a small bias.
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Consider now the case when all 6. are equal but di are
different. In other words, the law of influence on the response
is the same for all regressors, but each regressor is subjected
to a different effect of unaccounted factors. Let be a = 0.2,
n=30,0 =[1° 1° 1° 1°] but d = [1; 3; 1; 3]. The beta-coeflicients
now will be: [large; small; large; small]. The calculated mean
beta-coefficients are:

OLS: [0.4517 0.0573 0.4502 0.0576];
MOLS: [0.4407 0.0685 0.4402 0.0687]; 7)
Ridge(0.1): [0.3708 0.1281 0.3707 0.1282].

The coefficients of variation (CVs) of the beta-coeffi-
cients:

OLS: [0.4517 0.0573 0.4502 0.0576];
MOLS: [0.4407 0.0685 0.4402 0.0687]; ®)
Ridge(0.1): [0.3708 0.1281 0.3707 0.1282].

We see in (7) that the ridge(0.1) estimations of the pop-
ulation solution became more biased. The beta-coeflicients
became smoothed: large coefficients decreased, while smaller
ones became significantly larger.

This is especially noticeable for smaller coefficients,
which have doubled. Considering that for a = 0.2 there is prac-
tically no collinearity of data, the MOLS and ridge(0.1) solu-
tions should, on average, be close to the OLS solution. This is
really so for the MOLS, but this is no longer the case for the
ridge(0.1) method, as seen in (7).

All three methods provide inadequate solutions for n =30
(CV > 10 %) regarding the adequacy. That is, for n = 30 and
different d, all solutions became significantly more variable.
This is especially true for smaller values of the regression coef-
ficients. It means that in a real situation, for small samples, the
solution to the LR problem may well be economically correct
but significantly inadequate for all considered methods.

For larger sample sizes, the situation improves but very
slowly for a = 0.2 (no near-collinearity). In such a case, only for
n > 1000 all solutions become adequate. The calculated mean
beta-coefficients become in this case:

OLS: [0.4508 0.0573 0.4507 0.0574];
MOLS: [0.4441 0.0644 0.4440 0.0645]; 9)
Ridge(0.1): [0.3741 0.1244 0.3741 0.1244].

The coefficients of variation (CVs) of the beta-coeffi-
cients become:

OLS: [3.5743 13.8269 3.5990 13.9954];
MOLS: [13.96 71.756 13.97 71.54];

10
Ridge(0.1): [1.6169 5.0790 1.6419 5.1409]. 1

With the appearance of near-collinearity, the situation
changes dramatically for all sample sizes. OLS solutions become
more unstable and therefore inadequate, but the ridge(0.1) so-
lutions become more stable and adequate. The MOLS solution
becomes adequate for even larger sample sizes in this case.

Thus, the most noticeable drawback of the ridge(0.1)
method compared to the MOLS is the smoothing of the regres-
sion coefficients. Of course, one can interpret this drawback as
an increase in the bias for different beta-coefficients in the pop-
ulation, but it is namely a smoothing because, with the same
coefficients in the population, the bias of the ridge(0.1) solu-
tion does not manifest itself noticeably. It is worth noting that
only strictly linear data were considered above, although, for
nonlinear data, the situation with the adequacy of the ridge(0.1)
method remains practically the same.

OLS consistency peculiarities.

It is proved (see, for example, [9]) that any OLS solu-
tion to the LR is consistent. This property was used in [1; 2]
and above for not near-collinear data (VIF~20) to estimate the
population solution using the OLS solution for a linear sample
of size 107. Unfortunately, when modeling data, we cannot al-
ways use the OLS solution for large sample sizes to estimate the
population’s solution.

For the case considered above: O = [1° 1° 1° 1°], and
d = [1; 3; 1; 3], but with large enough near-collinearity, a = 0.01
(VIE~10%), the OLS solution converges to the population solu-
tion too slowly (if so at all) to be used in modeling as an esti-
mate of the population solution.

Table 2 shows the OLS, MOLS, and ridge(0.1) solutions
for large sample sizes generated by another principle than in
Table 1.

The first two regressors, x, and x, was generated with the
aid of the algorithm (3):

-1
the latter two ones, x, and x, were generated with the aid of

the algorithm x; =k (y+d.€). The second algorithm dif-
] J J .
fers from the first by the absence of the a-parameter, which
defines the level of incoherent noise in the regressors. Thus,
the regressors x, and x, do not depend on «a at all, and due to
the independence of the regressors, their contributions to the

Table 2
The OLS convergence under a near-collinearity
n n =108 a =0.05 (VIF ~ 225) n=107,a=0.005 (VIF ~ 2-10%
betas B, B, B, B; B, B, B B
OLS 0.4393 0.4388 0.1102 0.0128 0.4995 0.4991 0.0013 0.0002
MOLS 0.3162 0.3163 0.3058 0.064 0.3178 0.3178 0.3065 0.0599
Ridge 0.2825 0.2825 0.2624 0.1521 0.2854 0.2854 0.2585 0.1498
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response should not depend on the a-parameter. Therefore, be-
ta-coefficients 3, and 3, should also not depend on this param-
eter. Also, since d, is larger than d,, then 3, should be less than
B,. Since d,, d, and d, are equal, then 3, 3,, and 3, should also
be approximately equal since the solutions to the LR problem
should not depend on the regressors’ collinearity level due to
their independence. It is clear that the above conditions should
be met the more accurately the larger the sample size.

Allthese conditions are strictly fulfilled for the MOLS and
ridge(0.1) solutions, considering the existing bias and rounding
of solutions by these methods. As for the OLS solution, one
can see that 3, and 3, significantly depend on the a-parameter.
With a decrease in this parameter, these coefficients tend to
zero. For example, if n = 107, = 0.001 (VIF ~ 5 - 10°) the OLS
solution is: [0.4999; 0.5001; 0.0001; 0.0000]; the MOLS and
ridge(0.1) solutions do not change practically: [0.3178; 0.3178;
0.3065; 0.0599]; [0.2854; 0.2854; 0.2584; 0.1498].

This means that in the presence of a near-collinearity, the
OLS solutions for extremely large samples may be inadequate
to the solution in the population for some data. That is, it can-
not be stated that if the sample is large, then we can confidently
assume that the OLS provides adequate solutions. An excep-
tion is a case of strictly or approximately linear regressors with
the same or approximately the same variances of incoherent
noise (residual error in partial regressions of x, on y). The lin-
earity can be checked graphically, for instance. The residual er-

8
0.00 0.02 0.04

rors can be estimated by the solution of all partial regressions
of x. on y. If they differ insignificantly, the researcher can use
the OLS solution for a large enough sample as the adequate one
with confidence.

Nonlinearity and autocorrelation in data.

The nonlinearity of the regressor manifests itself in an
increase in the variance of the residual error in the problem of
the simple linear regression of this regressor on the response.
This is equivalent to increasing d]. in algorithm (3), which leads
to a decrease in the corresponding beta-coeflicient. Nonlinear-
ity can be modeled in different ways. In this work, we use a new
function for this:

P(n,x)=sign(x)|x|" . (11)

With the aid of this function, we can add a nonlinearity
in the algorithm (3) either by changing the residual error term,

-1
or by changing the whole regressor,
xj—>x§")=P(n,xj). (13)

The use of formula (12) is simply equivalent to an in-
crease in the residual error (d.) in the algorithm (3). At the same
time, the use of formula (13) leads to increasing the nonlinear-
ity in the regressor x. This effect we can see in Fig. 3 a) for
n=200,a=0.1, dj =1, 9], =1 and the power n = 3 in (11).

Y
3 T T T

Figure 3. Simple regressions of y on x..
a) nonlinearity; b) autocorrelation

The autocorrelation we model in this paper with the aid
of the sorted pseudo-random variables (randn.m in the MAT-
LAB). The data (a regressand and m regressors) that we use be-
low has been generated as follows:

y=sort(randn(n,1)); x=sort(randn(n,m)). (14)

The variables generated in such a way have significant auto-
correlation due to the sorting of random values of the pseudo-
random number generator. We will not go into the estimation
of the autocorrelation level since it is not essential now. Let us

just say that the autocorrelation is significant as to the Durbin-
Watson test. In Fig. 3 b), we show the simple regression of y on
one regressor of x from (14) for n = 100.

We consider now the influence of the nonlinearity and
autocorrelation on the LR problem solutions for the OLS,
MOLS, and ridge(0.1) method by comparison with the solu-
tions for strictly linear regressors. Here, we should consider
that in the algorithm (14) all beta coefficients in the population
should be the same, but in the scheme (3) it depends on the
choice of parameters.
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For Table 3, we take a = 0.1 and d. = 1 in (3) for the first
two regressors (x, and x,) and apply the function (10) to x, with
n = 3 (nonlinearity as in Fig. 3a). For the second two regressors,
we apply the scheme (14). Since we add the nonlinearity to x;,
the value of B, should be less than that of 3, in the population;
both values, B, and B, should be strictly equal in the popula-

tion because all regressors in (14) are statistically equal. Due to
the properties of the algorithm (3), B, should be approximately
the same as f3, and j3,.

To this combined data, we apply all three methods men-
tioned above to verify their adequacy. Table 3 shows the re-
sults.

Table 3
The OLS convergence under the nonlinearity and autocorrelation
n n=10%a=0.1(VIF~3-10°) n=107,a=0.1 (VIF ~ 2-109)
betas B, B, By By i B, By By
OLS 0.0042 0.0002 0.3900 0.6057 -0.0000 0.0000 0.3020 0.6980
MOLS 0.1327 0.2840 0.2928 0.2925 0.1322 0.2848 0.2925 0.2925
Ridge 0.1866 0.2464 0.2726 0.2725 0.1861 0.2468 0.2726 0.2726

From this table, we can see that the OLS solutions may
not converge to the population solution. The OLS solution
tends to the solution [0; 0; 0.3; 0.7] as the sample size increases,
which is entirely inconsistent with what is described above. It
should be: B, < B; B, = By = B,

For greater clarity of the situation with OLS solutions,
we consider repeating the samples 10* times to assess the ad-
equacy of the OLS, MOLS, and ridge(0.1) solutions for samples
smaller than in Table 3.

For this, we calculate the mean and coefficient of varia-
tion (CV) of these three methods’ solutions for different sample
sizes in Table 4.

It worth noting some features of the data generated in
the latter case. With an increase in n, the values of ; and f,
change smoothly and stabilize around the values of 0.1322 and
0.2848 for the MOLS and ridge(0.1) solutions, which one can
see in Table 3 and Table 4. The level of near-collinearity does
not significantly affect their values, as it should be.

At the same time, the OLS B, and f3, simply tend to zero,
and their variability clearly increases under the growth of the
VIE. The values of B, and B, change smoothly and stabilize
around 0.2925 for the MOLS solutions and around 0.2726 for
the ridge(0.1) solutions, as shown in Tables 3, 4. It seems that in
the OLS B, and B, tend to 0.3 and 0.7, respectively.

Table 4
The OLS, MOLS, and ridge(0.1) stability demonstration
n n=40,VIF~20 n=102VIF~150
betas By B, B B By B, B B

OLS mean 0.2171 0.3440 0.2244 0.2244 0.1522 0.4856 0.1841 0.1824
MOLS mean 0.2306 03317 0.2242 0.2236 0.2094 0.3295 0.2326 0.2332
ridge mean 0.2367 0.2852 0.2314 0.2312 0.2235 0.2886 0.2337 0.2339
OLS CV (%) 48.22 38.85 85.86 86.01 57.81 28.14 81.11 81.33
MOLS CV (%) 33.86 28.35 37.22 37.64 27.23 19.99 21.77 21.49
ridge CV (%) 17.59 16.33 19.68 19.89 12.01 10.59 11.06 10.94

n n=103VIF~103 n=104%VIF~5.103
OLS mean 0.0396 0.1544 0.4080 0.3992 0.0055 0.0232 0.4842 0.4873
MOLS mean 0.1427 0.2842 0.2878 0.2879 0.1333 0.2846 0.2922 0.2921
ridge mean 0.1918 0.2532 0.2667 0.2667 0.1868 0.2476 0.2719 0.2719
OLS CV (%) 17234 35.47 51.07 5237 516.04 36.32 44.29 44.04
MOLS CV (%) 13.09 6.07 3.14 3.14 412 203 0.98 0.99
ridge CV (%) 5.29 3.27 2.08 2.11 1.78 1.00 0.55 0.55

That s, it is clearly seen that for these data the OLS solu-

tions are not adequate to the solutions in the population, in any
case, up to n = 107, although they are economically correct.

This example shows that the OLS can give inadequate

solutions even for large samples. However, the researcher can

consider that the OLS solution is correct and consistent since it

164

Mpo6rnemn ekoHomikm Ne 1 (47), 2021



MaTtemaTtunyHi MeToau Ta Moaeni B eKOHOMiL

seems it is approaching a certain limit with n increasing (in this
case, to [0; 0; 0.3; 0.7]). However, this limit can be very far from
the true value in the population, as it is in our last example. At
the same time, in all the examples considered by us, the MOLS
and ridge(0.1) methods give stable solutions that are sufficiently
close to each other and the solutions in the population.
Another conclusion, which follows from Table 4, con-
cerns the adequacy of the LR problem’s solution for small
samples. From the calculations, it follows that the inclusion of
a nonlinear regressor or a regressor with autocorrelation in the
model significantly increases the variability of the solution for
all methods. As follows from Table 4, in the presence of non-
linearity and (or) autocorrelation in regressors, the appearance
of adequate MOLS and ridge solutions is shifted towards large
sample sizes. Table 4 demonstrates the effect of nonlinearity
and autocorrelation on the stability of the solution to the LR
problem. In contrast to strictly linear data, for which the so-
lutions of the LR problem are adequate, starting with sample
sizes greater than 10-30 ([1; 2] and Table 1 in this paper), the
presence of nonlinearity or autocorrelation of data can lead to
the inadequacy of solutions for sample sizes less than 1000. This

casts doubt on the need to retain explicitly nonlinear regressors
or regressors with the autocorrelation in a linear model.

To demonstrate the stability of the ridge(0.1) and
MOLS(0.001) solutions, consider the solution of the LR prob-
lem for actual data, which is considered a benchmark for the
presence of strong near-collinearity (and the presence of auto-
correlation in one regressor).

Real data.

Let us consider the LR problem’s solution for the real
data [9, p. 1150, Table F4.2 (The Longley data)]: y — Employ-
ment; x, — GNP deflator; x, — GNP; x, — Armed Forces; x, -
Year. The sample size is small enough (n = 16), VIF =~ 150.

As one may conclude from [1; 2], we can expect a large
variability of solutions to the LR problem for the OLS for such
a small sample. In this article, we will not touch on the issue of
resampling the real data, but to demonstrate the stability prop-
erties of all mentioned methods for solving the LG problem, we
will apply a simple method of discarding the last observation
(the «leave one out» method), as done in [9, p. 131]. Table 5
shows the OLS, ridge (0.1), and MOLS solutions for the whole
data and without the last observation.

Table 5
The OLS, MOLS, and ridge(0.1) solutions for the whole Longley's data and that without the last observation
OLS ridge(0.1) MOLS

n 16 15 16 15 16 15

bo 1169088 1459415 -350821 -341932 -410474 -407674

b1 -19.7681 -181.1230 87.7240 82.8068 91.6909 91.8554

b, 0.0644 0.0911 0.0135 0.0145 0.0129 0.0131

b3 -0.0101 -0.0749 0.2067 0.1941 0.1525 0.1450

b4 -576.4643 -721.7561 205.3931 200.9221 235.8999 234.4268

For the OLS, the solutions are strictly the same as in [9,
p. 131], and we demonstrate them only for convenience. In [9,
p. 131], the author draws attention to the large percentage of
changes in the regression coefficients (600, 800) but says noth-
ing about the economic incorrectness of the OLS solution
at all.

Without going into details, it can be seen that all regres-
sion coefficients must be positive since all variables increase
with time. That is, the OLS solution for this problem cannot
be used in any approach. At the same time, the ridge(0.1) and
the MOLS provide economically correct solutions that differ
little from each other. As it should be, the ridge(0.1) method
gives solutions with smaller absolute values due to the larger
regularization constant, but the difference is small. The small
coefficients’ values (b, b,), which are larger than that of the
MOLS, are due to the rounding property of the ridge(0.1)
method.

Asin [9], let us estimate the stability of the ridge(0.1) and
MOLS methods using the percentage change in the regression
coefficients when discarding the last observation, which we

calculate as follows: Ab =|b16 —b15|/|b16|. For b, we have for

the ridge(0.1), Ab, =5.6%; for the MOLS, Ab, =0.18%.

For b, we have for the ridge(0.1), Ab, =7.4%; for MOLS,
Ab, =1.6 %. For b, we have for the ridge(0.1), Ab, =6.1%;
for the MOLS, Ab;, =4.9 %. For b, we have for the ridge(0.1),
Ab, =2.2%; forthe MOLS, Ab, =0.6%. Ifthese estimates

were statistical, then, as shown in [1; 2], values of the stability
indicator (CV) less than 10% correspond to a 95% probability
that the solution is adequate. Based on this, we can assume that
both methods (MOLS and ridge(0.1)) give adequate solutions
for the Longley data.

However, judging by the results obtained in Table 4, the
presence of nonlinearity or autocorrelation in regressors leads
to a significant increase in the variability of solutions to the
LR problem. Therefore, it should be recognized that the LOO
method is yet not equivalent to a repetition of samples for es-
timating the coefficient of variability (CV) of solutions to the
LR problem.

Yes, indeed, the LOO method testifies to the stability
of the solution but does not say anything about its adequacy.
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It is clear that a stable and mathematically correct solution to
the LR problem reflects the real situation, but this situation
strongly depends on the sample size. As follows from the calcu-
lations given in Table 4, one should not delude ourselves about
the adequacy of the solutions to the LR problem obtained in
Table 5 for the Longley data because of the very small sample
size (n = 16).

If we examine Longley’s data graphically, we will see that
the regressors x;, x,, and x, are practically linear. As for x, the
presence of significant autocorrelation is clearly visible. It is
this regressor that is responsible for the potentially high vari-
ability of the LR solution. Let us say, for economic reasons, it is
permissible to exclude x, from the model. A new solution will
be (VIF = 130):

OLS: [by =1.1579¢+06; by =—21.2785; b, =0.0642; b, =—570.6641];
MOLS: [by =—4.0311e+0S; b; =96.3755; b, =0.0130; by =232.0640 ;
Ridge(0.1): [by =—3.4517¢+05; by =92.3378; b, =0.0138; b, =202.4829 |

If we compare this solution with that in Table 4 (with the
presence of x,), we will see that the regression coefficients for
the MOLS and ridge(0.1) have practically not changed. How-
ever, the closeness of the data to linear in this case guarantees
the closeness of the solution for n = 16 to the solution in the
population even for such a small sample, as shown in [1; 2].

Strictly speaking, in the case of one sample, we can only
say that both methods give fairly stable and close solutions,
although they are obtained by different methods. Since both
mathematical methods are correct and solve the same matrix
equation but with different regularization constants, the prox-
imity of solutions to each other and their stability guarantees
the proximity of these solutions to the population’s solution for a
large enough sample.

Using the ADG, it is easy to show, and this can be seen
from Table 1, that in the absence of significant collinearity
(o = 0.2), the OLS solution almost exactly coincides with the
MOLS solution, but the ridge(0.1) solution is slightly smaller
in absolute value. With an increase in the data collinearity, the
OLS solution deteriorates for different data types in different
ways, but the proximity between the MOLS and ridge(0.1) solu-
tions remains. This gives the right to believe that the similarity
of the MOLS and ridge solutions guarantees their closeness to
the solution in the population for a large enough sample. In any
case, this issue is confirmed by the numerous model experiments
carried out by the authors, and we can think so until the op-
posite is proved.

Depending on the problem being solved, the researcher
can choose which method to use. The ridge(0.1) method is pref-
erable, in our opinion, for small samples of a size less than 40,
since in this case, it has higher stability of the solutions that is
important for small samples. Herewith, you will have to come
to terms with the inevitable rounding of solutions. The studies
carried out guarantee that there will be no qualitative error, and
a small quantitative error in the regression coefficients should
not, as in our mind, affect the results of economic inferences.
For samples of a size larger than 40, one should, in our opinion,
use the MOLS(0.001) as more precise.

More reasonably, this problem will be considered in sub-
sequent works using the observed data resampling methods.

Summarizing the above, we note that the compari-
son of the widely known ridge(0.1) method [12] with the new
MOLS(0.001) method [1; 2] allows us to assert that the prob-
lem of solving the linear regression problem in the presence of
a near-collinearity has been practically solved in [12; 1; 2] and
this paper.

First, two regularization versions of the OLS equation
are considered, COV and ST. In the COV version, the well-
known ridge method has an approximately constant optimal

regularization parameter Xopt ~0.1. In the commonly used

ST version, the optimal regularizer had to be lopt =0.1(n—1),

where # is the sample size. The determination of the optimal
regularizer for the ridge method finally opens up the possibility
of its widespread use in practice fifty years after its theoretical
presentation by the author.

Second, a new method for solving the regularized OLS
equation, the MOLS, has been proposed in [1; 2], which gives
a stable solution to the ill-conditioned OLS equation in stan-
dardized variables for any conditioning level with the aid of the
Modified Cramer Rule [1, App. A], which is fundamentally dif-
ferent from the Cramer Rule used in the ridge method [12] but
gives practically the same solution to the LR problem for any
sample size and collinearity level (only for standardized data).

Third, both methods, ridge(0.1) and MOLS, mathemati-
cally correctly solve the same regularized OLS equation, but
with different regularization constants, 0.1 and 0.001, and give
stable and close solutions for any degree of data collinearity for
any sample sizes.

Fourth, both methods, ridge(0.1) and MOLS give close
solutions that both tend approximately to the population solu-
tion for any ADG-artificial data with the sample size increas-
ing.

All the above give reasons to believe that both meth-
ods (ridge(0.1) and MOLS) are approximately unbiased (the
MOLS to a slightly greater extent than the ridge) and stable
(the ridge(0.1) to a somewhat greater extent than the MOLS).
They converge pretty fast to a population solution (in prob-
ability). This one depends on the degree of linearity of the
regressors.

With this, the following features of the LR solution were
clarified. The ridge(0.1) solutions are smoother than the solu-
tions of the MOLS. The more the solutions (the regression co-
efficients) differ from each other in the population, the smooth-
er is the ridge(0.1) solution. However, it is worth noting that the
difference between the ridge(0.1) and MOLS solutions does not
significantly affect the economic inferences as to our mind. In
general, both methods can be used in economic research, but
one should keep in mind that the ridge(0.1) method is prefera-
ble for very small samples in terms of stability. For medium and
large samples, the MOLS(0.001) is preferable due to its higher
accuracy with practically equally acceptable stability.
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Both methods are more adequate to the population solu-
tion for small sample sizes if the regressors’ collinearity level
increases. At the same time, the adequacy of the OLS solution
decreases.

If the VIF of data is small, about 10-20, the MOLS and
ridge(0.1) methods practically give the same solutions as the
OLS. On the other side, the adequacy of all solutions is very
low due to a significant influence of the uncounted stochastic
factors, which decrease the VIF and, at the same time, the abso-
lute value of some regressors’ coefficients (those, in which the
stochastic noise is considerable).

As for the practical use of the ridge method, we note that,
as shown in the article, it is applicable only in the COV-version
of the ridge method with a constant regularizer equal to 0.1.
In the standard version of the ridge method, which is usually
used in packages, the regularizer depends on the sample size.
Therefore, before using the ridge method code, it is necessary
to check which version is used. The easiest way is to solve the
LR problem for the well-known Longley data with the regular-
izer 0.1 and check the solution against the one given in this ar-
ticle (Table 5). If the solutions do not meet, one should replace
the regularizer with 0.1(-1).

In conclusion, note that:

1) both methods (MOLS and ridge(0.1)) are sufficiently
optimal to stop looking for the exact value of the
optimal regularizer;

2) the application of both methods give very close
solutions, which confirm their closeness to the
solution in the population;

3) both methods make it possible not to discard strongly
correlated regressors that generate large values of the
VIF factor;

4) the presence of strongly correlated regressors
significantly increases the degree of adequacy of
solutions to the LR problem for small samples.
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Appendix A
The MATLAB code (mcr.m) for the regularized OLS
equation (2) for the standardized regression model {y, x} — the
observed data; {Y, X} — the standardized data. B — the beta-
coefficients. ) )
(—X’X+7JJB =—X'Y, (2)
n—1 n—1
| - |-
A=——X'X, B=—X'Y.
n—1 n—1

beta=mcr(A, B, le—3).
1. The Modified Cramer Rule

function beta=mcr(A, B, lambada)

n=length(B);H1=A*A;B1=A"*B; E=eye(size(H1));

H2=lambda.*E+H1;X=zeros(n,1);

for i=1:n; ti=[1:i-1 i+1:n]; H3=H2(ti,ti);H3=H3\eye
(size(H3));D=0; D1=0;

for k=1:n; tk=[1:k-1 k+1:n]; D=D+(-1)"(i+k)*B1(k)*
det(H3*H2(tk,ti));

D1=D1+(-1)*(i+k)*H2(k,i)*det(H3*H2(tk,ti)); end;
X(i)=D/D1; end; beta=X;

2. The COV-version of the MOLS method
(A, =0.001):

function [b,beta]=RegMOLS(y,x,lambda)

[n,m]=size(x); my=mean(y);mx=mean(x); sy=std(y);
sx=std(x); EE=[y x];

EE=standard(EE); % Standardization

YY=EE(;,1); XX=EE(;,2:m+1); BB=XX"*YY; BB=BB/
(n-1);

AA=XX"*XX; AA=AA/(n-1);

beta=mcr(AA,BB,Jlambda); b=(beta.*sy)./sx; b0=my-
mx*b’; b=[b0 b]; b=b’; beta=beta’;

3. The COV-version of the ridge method
(A, =0.1).

function [b,beta]=RegRidge(Y,X,lambda)

[n,m]=size(X); my=mean(Y);mx=mean(X); sy=std(Y);
sx=std(X);

EE=[Y X]; EE=standard(EE); % Standardization

YY=EE(;,1); XX=EE(;,2:m+1); BB=XX"*YY; BB=BB/
(n-1);

AA=XX*XX; AA=AA/(n-1);
AA=AA+lambda*eye(size(AA));

beta=AA\BB; b=(beta.*sy)./sx’; b0=my-mx*b; b=[b0 b’];
b=b’;

opt

4. Standardization code:
function E=standard(E)
[n,m]=size(E); E=E-ones(n,m)*diag(mean(E));
E=E*diag(1./std(E));
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