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У цій статті розглядається придатність двох основних методів для вирішення проблеми лінійної регресії (LR) за наявності мультиколінеарності, 
а саме OLS, та ridge-методу порівняно з рішеннями модифікованого методу OLS (MOLS) [1; 2], який, як і ridge, забезпечує стабільне рішення на будь-
якому рівні колінеарності даних. Порівняння проведено методом Монте-Карло із використанням штучного генератора даних (ADG) [1; 2], який 
генерує лінійні вибірки даних будь-якого розміру. Використання ADG дозволяє нам дослідити проблему регуляризації рівняння OLS. Було виявлено, що 
можливі дві версії регуляризації: версія COV, яка була запропонована та досліджена в [1; 2], та версія ST, яка зазвичай використовується в літературі 
та практичних реалізаціях. Запропоновані дослідження показують, що у версії COV ridge  метод має приблизно постійний оптимальний регулятор 

( )( 0.1)opt
ridgeλ ≈  для будь-якого обсягу вибірки та рівня колінеарності. Метод MOLS також має у цій версії приблизно постійний оптимальний регуля-
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The paper discusses the applicability of the two main methods for solving the linear regression (LR) problem in the presence of multicollinearity – the OLS and the 
ridge methods. We compare the solutions obtained by these methods with the solution calculated by the Modified OLS (MOLS) [1, 2]. Like the ridge, the MOLS 
provides a stable solution for any level of data collinearity. We compare three approaches by using the Monte Carlo simulations, and the data used is generated 
by the Artificial Data Generator (ADG) [1, 2]. The ADG produces linear and nonlinear data samples of arbitrary size, which allows the investigation of the OLS 
equation's regularization problem. Two possible regularization versions are the COV version considered in [1, 2] and the ST version commonly used in the literature 

and practice. The performed investigations reveal that the ridge method in the COV version has an approximately constant optimal regularizer ( )( 0.1)opt
ridgeλ ≈  for 

any sample size and collinearity level. The MOLS method in this version also has an approximately constant optimal regularizer, but its value is significantly smaller 
( )( 0.001)opt
MOLSλ ≈ . On the contrary, the ridge method in the ST version has the optimal regularizer, which is not a constant but depends on the sample size. In this 

case, its value needs to be set to ( ) 0.1( 1)opt
ridge nλ ≈ − . With such a value of the ridge parameter, the obtained solution is strictly the same as one obtained with the 

COV version but with the optimal regularizer ( ) 0.1opt
ridgeλ ≈  [1, 2]. With such a choice of the regularizer, one can use any implementation of the ridge method in all 

known statistical software by setting the regularization parameter ( ) 0.1( 1)opt
ridge nλ ≈ −  without extra tuning process regardless of the sample size and the collinearity 

level. Also, it is shown that such an optimal ridge(0.1) solution is close to the population solution for a sample size large enough, but, at the same time, it has some 
limitations. It is well known that the ridge(0.1) solution is biased. However, as it has been shown in the paper, the bias is economically insignificant. The more 
critical drawback, which is revealed, is the smoothing of the population solution –  the ridge method significantly reduces the difference between the population 
regression coefficients.  The ridge(0.1) method can result in a solution, which is economically correct, i.e., the regression coefficients have correct signs, but this 
solution might be inadequate to a certain extent. The more significant the difference between the regression coefficients in the population, the more inadequate 
is the ridge(0.1) method. As for the MOLS, it does not possess this disadvantage. Since its regularization constant is much smaller than the corresponding ridge 
regularizer (0.001 versus 0.1), the MOLS method suffers little from both the bias and smoothing of its solutions. From a practical point of view, both the ridge(0.1) 
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Keywords: multicollinearity, economic correctness, economic adequacy, modified Cramer’s rule, modified OLS, optimal ridge regression.
DOI:  https:// doi.org/10.32983/2222-0712-2021-1-155-168
Fig.: 3. Tabl.: 5. Formulae: 14. Bibl.: 27.
Tyzhnenko Alexander G. – Candidate of Sciences (Physics and Mathematics), Associate Professor, Associate Professor of the Department of Mathematics and 
Mathematcal Methods in Economics, Simon Kuznets Kharkiv National University of Economics (9a Nauky Ave., Khark³v, 61166, Ukraine)
E-mail: olersandr.tyzhnenko@m.hneu.edu.ua
ORCID: http://orcid.org/0000-0001-8508-7341
Ryeznik Yevgen V. – Candidate of Sciences (Physics and Mathematics), Lecturer, Department of Mathematics, Uppsala University (buildings 1, 6 and 7, 1, 
Lägerhyddsvägen, Uppsala, 75106, Sweden)
E-mail: yevgen.ryeznik@math.uu.se
ORCID: https://orcid.org/0000-0003-2997-8566



156 Проблеми економіки № 1 (47), 2021

Математичні методи та моделі в економіці

тор, але він значно менший за значенням ( )( 0.001)opt
MOLSλ ≈ . У той же час у загальновживаній версії ridge-методу нам потрібен оптимальний регу-

лятор ( ) 0.1( 1)opt
ridge nλ ≈ − , який залежить від обсягу вибірки n і не є константою. Нам було показано в роботі, що версія ST, яка використовується як 

правило на практиці разом із ridge-методом, при використанні оптимального параметра ( ) 0.1( 1)opt
ridge nλ ≈ − , дає строго те саме рішення, що і COV 

версія хребта з оптимальним регулятором ( ) 0.1opt
ridgeλ ≈  [1, 2]. Це дозволяє використовувати коди ridge-методу у всім відомому статистичному про-

грамному забезпеченні, встановлюючи параметр регуляризації ( ) 0.1( 1)opt
ridge nλ ≈ −  без будь-якого процесу налаштування, незалежно від обсягу вибір-

ки та рівня колінеарності. Ми також показуємо, що таке оптимальне рішення ridge(0,1) наближається до рішення в популяції для досить великого 
обсягу вибірки, але одночасно має деякі проблеми. Той факт, що метод ridge(0,1) дає зміщення, відомий, але це зміщення, як було показано в роботі, 
є економічно незначущим. Найважливішим виявленим недоліком є згладжування популяційного рішення: ridge-метод значно зменшує різницю між 
коефіцієнтами регресії популяції. Отже, ridge(0,1) може дати економічно правильний (з правильними ознаками), але певною мірою неадекватний 
розв’язок. Неадекватність ridge(0,1) виявляється тим більше, чим більша різниця між коефіцієнтами регресії в популяції. Цим недоліком MOLS прак-
тично не володіє, оскільки для нього константа регуляризації має набагато менше значення (0,001 проти 0,1). Через це метод MOLS практично 
мало страждає як від зміщення, так і від згладжування своїх рішень. З практичної точки зору, обидва методи, ridge(0,1) та MOLS, дають тісні 
стабільні рішення проблеми LR для будь-якого обсягу вибірки та рівня колінеарності, які наближаються до рішень в популяції зі збільшенням обсягу 
вибірки. У статті також показано, що для малих вибірок менше 40 переважно використовувати ridge(0,1), оскільки він є більш стабільним. Для 
середніх та великих зразків переважно використовувати MOLS, оскільки він є більш точним із приблизно однаковою стабільністю..
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Preamble. It is worth recalling that in practice, re-
searchers continue using only the OLS to solve the LR prob-
lems regardless of the VIF factor’s value. They only check the 
OLS solutions obtained just for economic correctness (only the 
correctness of the regression coefficients signs). If the OLS so-
lution is not correct, it is simply not taken into further consid-
eration. Because of that, a lot of valuable information is lost.

As the authors discovered in the previous works [1; 2], 
the actual situation might be much worse. The point is that ec-
onomically correct solutions can be inadequate to the solutions 
in the population. That is, an approximate OLS solution may be 
economically correct but quite far from the true solution.

Thus, to date, only the OLS solution with correct signs is 
the valid approximation of the true solution. Due to this situa-
tion, the following two problems arise immediately: 1) discard-
ing the data, which one could use correctly; 2) considering the 
obtained economically correct OLS solution as the true solu-
tion, although it might be far enough from the solution in the 
population.

This situation has lasted for many decades, even though 
in 1959-62, A. E. Hoerl proposed a powerful method to ap-
proximate the LR problem solution under near-collinearity, 
namely the ridge method. However, the practical application 
of this method turned out to be limited. It happened due to 
the significant dependence of the solution on the value of the 
regularization constant. The search for the optimal regulariza-
tion constant continues to this day yet without noticeable suc-
cess. The investigations carried out in this work have shown 

that under the commonly used formulation of the regulariza-
tion problem for the OLS equation, the optimal value of the 
regularization parameter is not a constant but is proportional 
to the sample size. 

Also, it has been found that the formulation of the OLS 
equation regularization method is of fundamental importance. 
Therefore, the paper considers two formulations of the OLS 
equation regularization: the COV version (the covariance ma-
trix is used) and the ST version (the standard formulation com-
mon in practice and theory up to date).

The paper demonstrates that an approximately constant 
value of the optimal regularization parameter is observed only 
in the COV version of the ridge method and has a value of 
about 0.1. The approximate optimal regularization parameter 
value of the OLS equation in the ST version equals 0,1 (n –1), 
where n is the sample size. Herewith, a problem in the COV 
version with the regularization parameter of 0.1 and a cor-
responding problem in the ST version with the regularizer of   
0,1 (n –1) have coinciding solutions for any sample size and 
a  collinearity level.

Introduction. From a mathematical perspective, an LR 
problem is equivalent to a curve-fitting problem [3–8]. The 
OLS solves this problem impeccably. 

The OLS approach is usually not suitable for obtaining 
an economically adequate solution to the LR problem [9–14]. 
The OLS can give an adequate solution to the economic regres-
sion problem if the regressors are near-orthogonal. Unfortu-
nately, this is not the case in practice.
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The main drawback that prevents the OLS solution from 
being adequate to an economic problem is the near-collinearity 
of regressors [9–20]. With the VIF factor increasing, the vari-
ability of the OLS solution drastically increases. This issue pre-
vents from getting an adequate economic solution to the re-
gression problem in practice.

There exist different remedies dealing with ill-condi-
tioning and near-collinearity, including various regularization 
methods, ridge regression [12], omitting variables, grouping 
variables in blocks, collecting additional data, and so on; see 
[5; 10–22] among others.  However, these remedies may be 
time-consuming, costly, impossible to achieve, or controver-
sial [23]. Also, the diagnostic tools that signal the presence 
of near-collinearity are crucial. However, the authors agree 
with [24] that no signal of multicollinearity exists at all be-
cause «multicollinearity is a matter of degree rather than one 
of kind». 

Many years of efforts did not yield any results in the 
search for a critical level of near-collinearity. It seems that  
A. C. Harvey in [24] was right that there is no such a critical 
level at all and the influence of near-collinearity at an OLS solu-
tion is a continuous process that depends on many parameters. 
This issue is also confirmed in [1; 2] and this paper.

Despite the theoretical warnings about the inadmissibil-
ity of using the OLS in the presence of near-collinearity of any 
level, this technique is still in use in practice, in economic and 
other studies, with attempts to reduce somehow the level of 
collinearity. As for the appearance of incorrect signs in the OLS 
solutions, that is, when solutions have no economic (in gen-
eral, physical) sense, this phenomenon, as shown in [1], is con-
nected with the fundamental property of nonsingular square 
matrices.

The possible economic inadequacy of OLS solutions, 
given that the solution has the correct signs (i.e., is economi-
cally correct), has been investigated in [2] and in the current 
paper. It has been shown that large enough random errors in 
solutions may cause this effect. Numerical studies of the vari-
ability in the OLS, MOLS, and ridge solutions allow us to state 
that economic inadequacy occurs when the coefficient of varia-
tion (CV) of a solution is larger than 10% [2].

In this paper, we investigate the problem of the appear-
ance of the incorrect and inadequate OLS solutions to the LR 
problem in the presence of multicollinearity and compare the 
OLS with the wide known ridge method and the new, provid-
ing a stable solution, Modified OLS (MOLS) method proposed 
in [1; 2].

The MOLS, as well as the ridge method, is an approxi-
mate method that uses the well-known Tikhonov’s regulariza-
tion principle and a new method of solving the regularized OLS 
equation called in [1; 2] the Modified Cramer Rule.

The Artificial Data Generator (ADG) proposed in [1; 2] 
allows generating data with different levels of regressors’ col-
linearity. Such data modeling helps to compare the three meth-
ods mentioned above to determine their applicability in real 
economic studies.

It worth mentioning that all considerations regarding the 
applicability of the OLS, ridge, and MOLS methods for optimal 
values of the regularization constant cannot be rigorously theo-
retically proven. Therefore, to demonstrate the ideas, we use 

the Monte Carlo simulations for linear and nonlinear data gen-
erated by the ADG. For this purpose, we use ADG to generate 
both linear data with a priori equal or different regression coef-
ficients in the population and nonlinear data with and without 
autocorrelation.

An essential feature of the ADG is the opportunity to es-
timate the population regression coefficients due to the OLS 
consistency property. For some values of the ADG parameters, 
we can estimate the population solution with any accuracy us-
ing a sample size large enough, making it possible to compare 
all the methods in terms of both the bias and accuracy of their 
solutions for any sample size.

Regularization of the OLS equation.
Given the data generated by the ADG, we investigated 

the regularization problem of the ill-conditioned standardized 
OLS equation for beta-coefficients: 

β ε
=

= +∑
1

,
m

j j
j

Y X

where { , }Y X  is the standardized data; { , }y x  – the observed 
data.

There are two methods to regularize the OLS equation: 
first, by the standard method (ST version) in the generally ac-
cepted form 

	 λ β+ =′ ′( ) ,X X I X Y 	 (1)

second, by using the covariance matrix (COV version [1; 2]) in 
the form

	  λ β + =′ ′  − −
1 1

.
1 1

X X I X Y
n n

	 (2)
                                                                       
Here, we demonstrate that both the COV version of 

the ridge method and the COV version of the MOLS have ap-

proximately constant optimal regularizer: ( ) 0.1opt
ridgeλ ≈   for the 

ridge method, and λ ≈( ) 0,001opt
MOLS   for the MOLS, which im-

plies that in practice a researcher can use only one regularizer 
( )( 0.1)opt
ridgeλ ≈  in all cases without tuning for the ridge method 

and only one regularizer ( )( 0.001)opt
MOLSλ ≈  for the MOLS, and 

these regularizers are approximately optimal and provide rea-
sonable accuracy. 

As for the commonly used  ST version, the optimal regu-
larizer in this case is

 λ λ= −( ) ( )( 1) .opt opt
ST COVn

For any computational environment one can use the pro-
gram implementation of the ridge method by setting an opti-

mal regularization constant to ( ) 0.1( 1)opt
ridge nλ = −  for any data 

sample and can obtain the estimated population solution with 
a good enough accuracy.

There is also considered here more one serious drawback 
of the regularization at all, excluding the well-known bias. The 
investigations have revealed that any regularization procedure 
tends to smooth the LR solution. The larger the regularization 
constant, the less the difference between the regression coef-
ficients unequal in the population (and the larger is the bias).
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If all regression coefficients are equal in the population, 
the ridge(0.1) method (with optimal regularizer), for example, 
also gives all the regression coefficients equal but slightly less 
in absolute value. If the regression coefficients are different 
in population, then, in addition to the general bias, there the 
smoothing between the regression coefficients arises.  In this 
case, the larger coefficients decrease in absolute value, and the 
smaller ones increase, but the sum of the beta coefficients prac-
tically does not change.

Change in the relationship between the regression co-
efficients leads to incorrect interpretation of regressors’ influ-
ence on the response, that is, to the inadequacy of the econom-
ic regression problem’s solution. This effect is an inherent part 
of the regularization process, and the larger the regularization 
constant, the more significant it is. Then, for the ridge method 

with the optimal regularization constant ( )( 0.1)opt
ridgeλ ≈ , this 

effect is much more significant than for the MOLS with the 

optimal regularization constant ( ) 0.001opt
MOLSλ ≈  that we will 

demonstrate further.
First, we generate data with a low level of collinearity 

(VIF~ 20), for which an OLS solution converges fast in prob-
ability to a population solution with the sample size increasing. 
For such data, we can take, for instance, the OLS solution for 
a sample of size 107 as the population one.

Having in hand the population solution, we investi-
gate the bias and standard deviation of the OLS, MOLS, and 
ridge(0.1) solutions for any sample size (n) and collinearity level 
(VIF). By varying these parameters, we can investigate both the 
stability of the methods and the economic adequacy of the so-
lutions they provide. Note that we will conduct these studies 
using the standardized (normalized) data. It is connected with 
the interesting behavior of the standardized regressor coeffi-
cients (βj). For example, the sum of beta-coefficients moduli is 
close to one for all cases observed.  Besides, for regressors with 
the same residual errors in partial regressions with a response, 
the beta coefficients are the same, regardless of the law of their 
linear influence on the response. If for every simple regression 
with a response, the residual errors are approximately similar, 
and the beta coefficients are different, this implies some auto-
correlation in data. As is shown later, the existence of autocor-
relation in data greatly impairs the adequacy of the OLS solu-
tions for finite samples.  

Linear and nonlinear data simulation with the ADG.
The main principles of simulating the linear data by the 

ADG are outlined in [1; 2]. However, the very definition of the 
data linearity concept has not been given. By itself, data cannot 
be linear or nonlinear. However, one may define data linearity 
when the data is used in a simple LR problem. If the LR prob-
lem is being solved, given data { , }y x :

= + +0 1 ,y b b x e

one can calculate the b-coefficients estimates 0 1
ˆ ˆ( , )b b   and the 

linear trend function 0 1
ˆ ˆŷ b b x= + . Then one can define the 

observed data as linear if the residual ε = − ˆy y  follows the 

normal distribution with a zero mean, σ 2(0, )N . For the mul-
tivariate regression problem, each regressor can be checked for 

linearity either theoretically or graphically to make appropriate 
economic decisions. 

As we will show below, the point is that the presence of 
regressors that are not close to linear leads to a significant de-
creasing in the corresponding regression coefficients in modu-
lus.  The researcher has to decide whether to keep or discard a 
regressor that contributes a little to the response, even though 
its presence remarkably changes the LR problem solution. Fur-
ther on, we will touch on some variants of a linear data genera-
tion used for investigating the applicability of the OLS, ridge, 
and MOLS in practical research.

In [1; 2], we only considered strictly linear regressors 
with the same statistical parameters, which should give the 
same regression coefficients and hence the same contribution 
in the response. The latter follows from the very principle of 
data generation. We proceed in the ADG from the specifica-
tion of the response in the form of a pseudo-random vector: 

= ( ,1)y randn n  in the MATLAB notation. The regressors (xj) 
we generate with the aid of the simple regression model as

	 αε−= +1( ),j j jx k y d 	 (3)

where kj sets the law of nonstochastic linear influence of a re-
gressor on the response: = j jy k x ; ε sets the stochastic impact 

of unaccounted factors, which are set as ( ,1)randn nε =  with 
the amplitude αjd . If we write (3) as 

	 α= + ⋅ ( ,1),j j jy k x d randn n 	 (4)

we can see that α ⋅ ( ,1)jd randn n  sets a residual error in the 
simple regression of y on xj. The multiplier αjd  in (3) sets the 
random component in xj, incoherent to y. The first component 
in (3) is coherent to y and sets the economic law of influence of 
the regressor xj on the response. 

Note that with a decrease in α, the incoherent compo-
nent also decreases in amplitude, leading to an increase in the 
level of near-collinearity of the regressors (VIF) and the equal-
ity of the beta-coefficients in the population, even though dj-
parameters may be different. 

In the code, we set:  πθ−  ⋅ = ⋅  
1 tan 180

180j jset k , where θ j  

is the angle in degrees between the trend and OY axes in the 
simple regression xj on y. So, for θ = °1j , for example, we have 
a significant influence of xj on y in the regression y on xj; for 
θ = °89j

, for instance, we have a negligible effect of xj on y 
in the regression y on xj. If we take θ > °90j , the sign of the 
regression coefficient changes, and so on.

If α tends to zero, the regressors xj  become closer to each 
other, which increases their collinearity, and so their VIF fac-
tor. The multiplier dj allows us to adjust the level of influence 
of unaccounted factors on the response for each regressor for 
not very small α (for very small α all djα are approximately zero, 
and a change in dj does not influence the solution, if dj is not 
too large). 

So, in the ADG model (3), the multicollinear regulator α 
and the multiplier dj are connected such that the difference be-
tween the regressors diminishes as α tends to zero. This means 
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that with an increase in the level of a near-collinearity (VIF) 
in the ADG, the regression coefficients bj in the linear model 
become the same in the population. In this work, we use this 
fact to check the adequacy of the method for solving the LR 
problem in the presence of a near-collinearity. 

Particularly, we further use this to investigate the ap-
proximation of the population solution under the presence 
of a near-collinearity by the OLS solution with an increase in  
a sample size. This question is of fundamental importance for 
studying the methods of solving the LR problem, given the 
near-collinear data. Thus, for the data generated by ADG, if 
the OLS solution to the LR problem stabilizes with sample size 
increasing and does not change, say for n > 104, then one can 
consider the OLS solution obtained for n > 106 or n > 107 as an 
approximate solution in the population.  This is exactly how we 
estimate the population solution in this work.

The approach mentioned above allows us to evaluate 
both the bias and adequacy of the LR problem solution ob-
tained for a finite sample size. Multiple repetitions of solutions 
for data extracted from the same population (ADG) allows us 
to determine the coefficients of variation (CV) of solutions for 
different methods depending on the sample size, which helps 
the researcher to decide on the applicability of the results ob-
tained by the chosen method in practice. Such a decision will 
be correct only for strictly linear data. Therefore, before practi-
cally solving the LR problem, it is necessary to check the data 
linearity, at least graphically. The influence of the data nonlin-
earity is very significant, and we will discuss it below.

The choice of parameters in (3) determines the solution 
to the LR problem in the population. So, if dj and kj in (3) are 
the same, it is obvious that all regression coefficients will also be 
equal in the population. This case was investigated in [1; 2]. We 
used there the COV version (2) of the regularized OLS equa-
tion and compared solutions of the OLS, the ridge(0.1) method 
with regularization constant 0.1, and the MOLS with regular-
ization constant 0.001. There, we also used the OLS solution for 
a large sample of size n > 106 as the population solution, which 
helped to determine the bias for each method at different val-
ues of the sample size and the coefficients of variation (CV) of 
the solutions. 

The use of the OLS solution for a large sample as an es-
timate of the population solution is based on the well-known 
property of consistency of the OLS estimators, see, for exam-
ple, [9]. When simulating regressors with the same statistical 
characteristics, the OLS solutions did tend to a certain limit, 
and for samples larger than n ≈ 103 did not practically change. 

To demonstrate the OLS, MOLS, and ridge solutions 
properties in other different cases, we give below their solu-
tions simultaneously for the COV version of the regularized 
OLS equation (2). The MOLS algorithm for the COV version 
(2) was described in [1; 2]. Instead of using the ridge(0.1) in the 
COV version (2), one can use any program implementation of 
the ridge method (ST version) with the regularization param-
eter ( )0.1 1nλ = −  for any sample size n and the collinearity 
level.

Some peculiarities of the OLS solutions. 
Everyone knows that the OLS solutions to the LR prob-

lems can be incorrect if the regressors are collinear to some 
degree. It is convenient to measure the degree of collinearity of 

the data by the VIF indicator. The question of at what value of 
the VIF the OLS solutions cannot be used remains unexplored 
to date, apart from the cases when the method gives incorrect 
solution signs. 

The latter also raises the question: if the OLS solution is 
economically incorrect, can the experimental data still be used 
for scientific purposes, or should they simply be thrown away? 
The answer to the last question is usually the advice to increase 
the experimental dataset. In reality, this is not always possible, 
and even if it is possible, the question remains to what extent 
the dataset should be increased.

To clarify these issues, we consider OLS solutions’ fea-
tures and compare them with solutions of the ridge method and 
the MOLS. As the first step, we consider solutions to the LR 
problem with four regressors on strictly linear data generated 
using the ADG with equal parameters 1jd =  and 1jθ = °. 

In this case, all the population beta-coefficients will be ≈ 0.25 
(~1/m, for m = 4). With the aid of the 104 times the ADG data 
repeating, we estimate the stability and adequacy of all three 
methods’ solutions for small and large samples of various 
VIFs. 

For n =103 and α = 0.2 (VIF ~ 20), i.e. average sample 
sizes in the absence of near-collinearity (for strictly linear re-
gressors), we obtain for one sample: the OLS beta-coefficients 
can be [0.2477    0.2587    0.2517    0.2516]; for the ridge(0.1) so-
lution: [0.2448    0.2478    0.2459    0.2458]; for the MOLS(10–3) 
solution: [0.2497    0.2561    0.2519    0.2520]. As we can see, 
all solutions are close to the population one (≈ 0.25). Note that 
all the values of the beta coefficients obtained by the ridge(0.1) 
method are less than the corresponding coefficients in the 
MOLS because the regularization constant in the ridge method 
is larger than that in the MOLS. However, the ridge(0.1) bias is 
small enough. 

More precisely, the bias of the ridge(0.1) method solutions 
can be calculated by resampling (Tables 1, 2). In the tables, the 
coefficients of variation (CV) are also shown for all three meth-
ods. (The population solution estimation with the aid of the 
OLS solution for  n = 106  is β = [0.2527; 0.2524; 0.2521; 0.2526];  
for n = 107 is  β =  [0.2524; 0.2524; 0.2524; 0.2525]).

Solutions with a coefficient of variation less than 10% can 
be considered adequate at the 5% significance level [1; 2]. Table 
1 shows that for linear data, the OLS solutions can be consid-
ered adequate for sample sizes larger than 103. For sample sizes 
less than 30, all methods give an inadequate solution. When  
n = 30, only the ridge(0.1) method gives adequate solutions. 
When data are linear, and the regression coefficients are equal 
in the population, the ridge(0.1) method is the best: it is most 
stable and gives a small enough bias. For more details, see pa-
pers [1; 2]. 

Modeling nonlinearity with the ADG and analyzing solu-
tions to the LR problem with nonlinear data will be considered 
in this paper after discussing the optimality of the ridge(0.1) 
and MOLS solutions.

Ridge and MOLS optimality.
The main problem of solving the OLS equation by the 

regularization method is to determine the optimal value of the 
regularization constant, at which the regression coefficients are 
stable and sufficiently close to the corresponding values in the 
population.
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Many theoretical works are devoted to this problem, see, 
for example, [20; 25; 26], from which it can be concluded that 
there is probably no optimal regularization constant for the 
standard regularization scheme (ST version) of the OLS equa-
tion.

This article investigates this problem using the linear 
data simulation with the aid of the ADG. Considering that we 
know with sufficient accuracy the solution in the population, 
we directly investigated the second norm of the difference be-
tween the LR-solution for a sample of size n and the solution 
in the population. 

For the ADG sampling with equal parameters 1jd =  

and 1jθ = °  we solve the COV version of the regularized OLS 

equation (2) by the ridge(0.1) method with various values of the 

regularization constant λ for different sample sizes (n) and dif-
ferent VIFs and calculate the Euclidean norm of the deviation 
of the sample solution from that of the population (deviation 
norm in Figures (1, 2) below). 

Figures (1, 2) demonstrate the general situation: the op-
timal value of the regularization parameter exists but depends 
on both the sample size and VIF; in principle, for each sample, 
it is possible to find the exact value of the optimal regulariza-
tion parameter, but from the figures and more detailed studies 
it can be concluded that the deviation of the exact optimal pa-
rameter from the value 0.1 insignificantly changes a solution to 
the LR problem for any sample. 

A similar situation also occurs for the MOLS: the exact 
value of the optimal regularizer changes for each sample in 
the vicinity of 0.001, but the solution remains practically un-

Table 1

Means and CVs of beta-coefficients, VIF ~ 20, 104-repetitions

n n = 103 n = 30

betas β1 β2 β3 β3 β1 β2 β3 β3

The OLS solutions in the absence of collinearity. 

mean 0.2526 0.2523 0.2524 0.2524 0.2516 0.2525 0.2535 0.2524

CV(%) 5.61 5.55 5.49 5.51 36.01 35.69 36.06 35.93

The ridge(0.1) solutions in the absence of collinearity. 

mean 0.2461 0.2461 0.2461 0.2461 0.2459    0.2461    0.2465    0.2461    

CV(%) 1.59 1.58 1.56 1.57 9.53    9.48    9.54    9.50    

The MOLS(0.001) solutions in the absence of collinearity. 

mean 0.2525 0.2523 0.2524 0.2524 0.2519 0.2524 0.2532 0.2523

CV(%) 3.33 3.29 3.26 3.27 18.89 18.75 18.85 18.79
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Figure 1. Deviation of ridge(0.1) solutions from the population one  
for not very strong collinearities (α = 0,05) depending on λ
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Figure 2. Deviation of ridge(0.1) solutions from the population one  
for strong enough collinearities (α = 0,01) depending on λ

changed. Detailed studies of this problem have shown that in 
practice, it is quite possible to use in all cases the ridge method 
in the COV version with the regularizer equals 0.1 (ridge(0.1)), 
and the MOLS method with the regularizer equals 0.001.

Linear regressors with a different variance of the noise.
It was shown above that the ridge(0.1) method gives ex-

cellent solutions for linear regressors with the same parameters 
θj and dj. The stability of the method is higher than for MOLS 
due to a larger regularization constant (0.1 vs. 0.001), and the 
bias is not significant for economic research. Let us now con-
sider a situation in which the regressors are also strictly linear, 
but with different laws of influence on the response (different 
θj) and the same amplitude of the normal noise in regressors 
(the same dj).

To demonstrate the quality of ridge(0.1) solutions, we 
consider, as above, a small sample (n = 30) and show the coef-
ficient of variation (CV) for all three methods. Let us set for 
this: θ = [89°; 1°; 89°; 1°], d = [1; 1; 1; 1], α = 0.2 in (3). Note that 
for α = 0.2 (VIF ~20), the collinearity is practically absent, 
and the OLS gives a correct and adequate solution to the LR 
problem, with which we compare the MOLS and ridge(0.1) 
solutions.

With such parameters, the b-coefficients in the popula-
tion will be: [small; large; small; large] according to the θ-values; 
the beta-coefficients will be the same (≈0.25) as we affirmed 
above. 

Since we do not know the regression coefficients in the 
population, we find their estimate by the OLS solution with  
n = 106 and 107. For bs we have for n =106: 

b = [0.1491(b0); 0.0481; 14.1879; 0.0482; 14.1721];
for betas we have: β = [0.2522; 0.2525; 0.2528; 0.2523].

For n = 107, we have for bs:  
b = [0.1493(b0);  0.0043; 14.1981; 0.0043; 14.1792]; 

for betas we have: β = [0.2524; 0.2526; 0.2523; 0.2524]. It is 
clearly that the beta-solutions in the population are the same 
and close to 0.25. 

In practice, the researcher is interested in the statisti-
cal properties of an LR problem solution on a one-sample of 
a specific size. To date, the researcher cannot obtain such 
information since this requires a large set of samples of a 
given size from the population, and it is impossible to obtain 
such one. 

In this work, due to the program for generating samples 
with a given property of solutions in the population (ADG), we 
can draw a sample from the population an unlimited number 
of times. This allows us to evaluate the statistical characteristics 
of a solution to the LR problem by the chosen method (OLS, 
MOLS, or ridge (0.1)) for data of a certain type, for example, 
for strictly linear data, for near-linear data, or, in general, for 
nonlinear data.

First, consider the statistical characteristics of solu-
tions to the LR problem for sufficiently small strictly linear 
samples by various methods (OLS, MOLS, and ridge (0.1)). For  
n = 30, α = 0.2,  the same d-parameters (all ones), and different 
θ-parameters (θ = [89o; 1o; 89o; 1o]), we have the following solu-
tions’ means and their CVs using 104 repetitions. Mean beta-
coefficients:    

	 [ ]
[ ]

( ) [ ]

OLS:  0.2516; 0.2525; 0.2535; 0.2524 ;
MOLS:  0.2519; 0.2524; 0.2532; 0.2523 ;

0.1 :  0.2459; 0.2461; 0.2465; 0.2461 .Ridge 	  
(5)

Coefficients of variation (CVs):                               

	 [ ]
[ ]

( ) [ ]

OLS:  36.01; 35.69; 36.06; 35.93 ;
MOLS:  18.89; 18.75; 18.85; 18.79 ;

0.1 :  9.53; 9.48; 9.54; 9.49 .Ridge 	 (6)

Comparing with the case of identical laws of influence of 
regressors on the response (equal θj in Table 1), we see that the 
bias and the stability of all methods have not changed. Again, 
the ridge(0.1) method is the best despite a small bias.
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Consider now the case when all θj are equal but dj are 
different. In other words, the law of influence on the response 
is the same for all regressors, but each regressor is subjected 
to a different effect of unaccounted factors. Let be α = 0.2,  
n = 30, θ = [1o; 1o; 1o; 1o] but d = [1; 3; 1; 3]. The beta-coefficients 
now will be: [large; small; large; small]. The calculated mean 
beta-coefficients are:

[ ]
[ ]

( ) [ ]

OLS:  0.4517   0.0573   0.4502   0.0576 ;
MOLS:  0.4407   0.0685   0.4402   0.0687 ;                        

0.1 :  0.3708   0.1281   0.3707   0.1282 .Ridge    
(7)

The coefficients of variation (CVs) of the beta-coeffi-
cients:

[ ]
[ ]

( ) [ ]

OLS:  0.4517   0.0573   0.4502   0.0576 ;
MOLS:  0.4407   0.0685   0.4402   0.0687 ;  

0.1 :  0.3708   0.1281   0.3707   0.1282 .Ridge    
(8)

We see in (7) that the ridge(0.1) estimations of the pop-
ulation solution became more biased. The beta-coefficients 
became smoothed: large coefficients decreased, while smaller 
ones became significantly larger. 

This is especially noticeable for smaller coefficients, 
which have doubled. Considering that for α = 0.2  there is prac-
tically no collinearity of data, the MOLS and ridge(0.1) solu-
tions should, on average, be close to the OLS solution. This is 
really so for the MOLS, but this is no longer the case for the 
ridge(0.1) method, as seen in (7).

All three methods provide inadequate solutions for  n = 30 
(CV > 10 %) regarding the adequacy. That is, for n = 30 and 
different dj, all solutions became significantly more variable. 
This is especially true for smaller values of the regression coef-
ficients. It means that in a real situation, for small samples, the 
solution to the LR problem may well be economically correct 
but significantly inadequate for all considered methods. 

For larger sample sizes, the situation improves but very 
slowly for α = 0.2 (no near-collinearity). In such a case, only for 
n > 1000 all solutions become adequate. The calculated mean 
beta-coefficients become in this case:

[ ]
[ ]

( ) [ ]

OLS:  0.4508   0.0573   0.4507   0.0574 ;
MOLS:  0.4441   0.0644   0.4440   0.0645 ;    

0.1 :  0.3741   0.1244   0.3741   0.1244 .Ridge
   

(9)

The coefficients of variation (CVs) of the beta-coeffi-
cients become:

[ ]
[ ]

( ) [ ]

OLS:  3.5743 1 3.8269   3.5990 1 3.9954 ;
MOLS:  13.96  71.756 1 3.97  71.54 ;      

0.1 :  1.6169   5.0790  1 .6419   5.1409 .Ridge
   

(10)

With the appearance of near-collinearity, the situation 
changes dramatically for all sample sizes. OLS solutions become 
more unstable and therefore inadequate, but the ridge(0.1) so-
lutions become more stable and adequate. The MOLS solution 
becomes adequate for even larger sample sizes in this case.

Thus, the most noticeable drawback of the ridge(0.1) 
method compared to the MOLS is the smoothing of the regres-
sion coefficients. Of course, one can interpret this drawback as 
an increase in the bias for different beta-coefficients in the pop-
ulation, but it is namely a smoothing because, with the same 
coefficients in the population, the bias of the ridge(0.1) solu-
tion does not manifest itself noticeably. It is worth noting that 
only strictly linear data were considered above, although, for 
nonlinear data, the situation with the adequacy of the ridge(0.1) 
method remains practically the same.

OLS consistency peculiarities.
It is proved (see, for example, [9]) that any OLS solu-

tion to the LR is consistent. This property was used in [1; 2] 
and above for not near-collinear data (VIF~20) to estimate the 
population solution using the OLS solution for a linear sample 
of size 107.  Unfortunately, when modeling data, we cannot al-
ways use the OLS solution for large sample sizes to estimate the 
population’s solution.

For the case considered above: θ = [1o; 1o; 1o; 1o], and  
d = [1; 3; 1; 3], but with large enough near-collinearity, α = 0.01 
(VIF~103), the OLS solution converges to the population solu-
tion too slowly (if so at all) to be used in modeling as an esti-
mate of the population solution. 

Table 2 shows the OLS, MOLS, and ridge(0.1) solutions 
for large sample sizes generated by another principle than in 
Table 1.

The first two regressors, x1 and x2 was generated with the 
aid of the algorithm (3):

1( ),j j jx k Y d αε−= +
 

the latter two ones, x3 and x4 were generated with the aid of 

the algorithm 1( )j j jx k y d ε−= + . The second algorithm dif-
fers from the first by the absence of the α-parameter, which 
defines the level of incoherent noise in the regressors. Thus, 
the regressors x3 and x4 do not depend on α at all, and due to 
the independence of the regressors, their contributions to the 

Table 2

The OLS convergence under a near-collinearity

n n = 106, α = 0.05 (VIF ~ 225) n = 107, α = 0.005 (VIF ~ 2 . 104)

betas β1 β2 β3 β3 β1 β2 β3 β3

OLS 0.4393 0.4388 0.1102 0.0128 0.4995 0.4991 0.0013 0.0002

MOLS 0.3162 0.3163 0.3058 0.064 0.3178 0.3178 0.3065 0.0599

Ridge 0.2825 0.2825 0.2624 0.1521 0.2854 0.2854 0.2585 0.1498
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response should not depend on the α-parameter. Therefore, be-
ta-coefficients β3 and β4 should also not depend on this param-
eter. Also, since d4 is larger than d3, then β4  should be less than 
β3. Since d1, d2 and d3 are equal, then β1, β2, and β3 should also 
be approximately equal since the solutions to the LR problem 
should not depend on the regressors’ collinearity level due to 
their independence. It is clear that the above conditions should 
be met the more accurately the larger the sample size.

All these conditions are strictly fulfilled for the MOLS and 
ridge(0.1) solutions, considering the existing bias and rounding 
of solutions by these methods. As for the OLS solution, one 
can see that β3 and β4 significantly depend on the α-parameter. 
With a decrease in this parameter, these coefficients tend to 
zero. For example, if n = 107, = 0.001 (VIF ~ 5 . 105) the OLS 
solution is: [0.4999; 0.5001; 0.0001; 0.0000]; the MOLS and 
ridge(0.1) solutions do not change practically: [0.3178; 0.3178; 
0.3065; 0.0599]; [0.2854; 0.2854; 0.2584; 0.1498]. 

This means that in the presence of a near-collinearity, the 
OLS solutions for extremely large samples may be inadequate 
to the solution in the population for some data. That is, it can-
not be stated that if the sample is large, then we can confidently 
assume that the OLS provides adequate solutions. An excep-
tion is a case of strictly or approximately linear regressors with 
the same or approximately the same variances of incoherent 
noise (residual error in partial regressions of xj  on y). The lin-
earity can be checked graphically, for instance. The residual er-

rors can be estimated by the solution of all partial regressions 
of xj on y. If they differ insignificantly, the researcher can use 
the OLS solution for a large enough sample as the adequate one 
with confidence.

Nonlinearity and autocorrelation in data.
The nonlinearity of the regressor manifests itself in an 

increase in the variance of the residual error in the problem of 
the simple linear regression of this regressor on the response. 
This is equivalent to increasing  dj  in algorithm (3), which leads 
to a decrease in the corresponding beta-coefficient. Nonlinear-
ity can be modeled in different ways. In this work, we use a new 
function for this:

	 ( ) ( ), sign | | .nP n x x x=  	 (11)

With the aid of this function, we can add a nonlinearity 
in the algorithm (3) either by changing the residual error term,

	 1( ( , ))j j jx k y d P nα ε−= + 	 (12)

or by changing the whole regressor,

	 ( ) , .( ) n
j j jx x P n x→ = 	  (13)

The use of formula (12) is simply equivalent to an in-
crease in the residual error (dj) in the algorithm (3). At the same 
time, the use of formula (13) leads to increasing the nonlinear-
ity in the regressor xj. This effect we can see in Fig. 3 a) for  
n = 200, α = 0.1, dj = 1, θj = 1 and the power n = 3 in (11).
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Figure 3. Simple regressions of y on xj.  
a) nonlinearity;  b) autocorrelation

The autocorrelation we model in this paper with the aid 
of the sorted pseudo-random variables (randn.m in the MAT-
LAB). The data (a regressand and m regressors) that we use be-
low has been generated as follows:

   ( ( ,1)); ( ( , )).y sort randn n x sort randn n m= = 	 (14)

     The variables generated in such a way have significant auto-
correlation due to the sorting of random values of the pseudo-
random number generator. We will not go into the estimation 
of the autocorrelation level since it is not essential now. Let us 

just say that the autocorrelation is significant as to the Durbin-
Watson test. In Fig. 3 b), we show the simple regression of y on 
one regressor of x from (14) for n = 100. 

We consider now the influence of the nonlinearity and 
autocorrelation on the LR problem solutions for the OLS, 
MOLS, and ridge(0.1) method by comparison with the solu-
tions for strictly linear regressors. Here, we should consider 
that in the algorithm (14) all beta coefficients in the population 
should be the same, but in the scheme (3) it depends on the 
choice of parameters.
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For Table 3, we take  α = 0.1 and dj = 1 in (3) for the first 
two regressors (x1 and x2) and apply the function (10) to x1 with 
n = 3 (nonlinearity as in Fig. 3a). For the second two regressors, 
we apply the scheme (14). Since we add the nonlinearity to x1, 
the value of β1 should be less than that of β2 in the population; 
both values, β3 and β4, should be strictly equal in the popula-

tion because all regressors in (14) are statistically equal. Due to 
the properties of the algorithm (3), β2 should be approximately 
the same as β3 and β4. 

To this combined data, we apply all three methods men-
tioned above to verify their adequacy. Table 3 shows the re-
sults.

Table 3

The OLS convergence under the nonlinearity and autocorrelation

n n = 106, α = 0.1 (VIF ~ 3 . 105) n = 107, α = 0.1 (VIF ~ 2 . 106)

betas β1 β2 β3 β3 β1 β2 β3 β3

OLS 0.0042 0.0002 0.3900 0.6057 -0.0000 0.0000 0.3020 0.6980

MOLS 0.1327 0.2840 0.2928 0.2925 0.1322 0.2848 0.2925 0.2925

Ridge 0.1866 0.2464 0.2726 0.2725 0.1861 0.2468 0.2726 0.2726

From this table, we can see that the OLS solutions may 
not converge to the population solution. The OLS solution 
tends to the solution [0; 0; 0.3; 0.7] as the sample size increases, 
which is entirely inconsistent with what is described above. It 
should be: β1 <  β2; β1 ≈  β3 =  β4. 

For greater clarity of the situation with OLS solutions, 
we consider repeating the samples 104 times to assess the ad-
equacy of the OLS, MOLS, and ridge(0.1) solutions for samples 
smaller than in Table 3.

 For this, we calculate the mean and coefficient of varia-
tion (CV) of these three methods’ solutions for different sample 
sizes in Table 4. 

Table 4

The OLS, MOLS, and ridge(0.1) stability demonstration

n n = 40, VIF ~ 20 n = 102, VIF ~ 150

betas β1 β2 β3 β3 β1 β2 β3 β3

OLS mean 0.2171 0.3440 0.2244 0.2244 0.1522    0.4856 0.1841 0.1824

MOLS mean 0.2306 0.3317 0.2242 0.2236 0.2094 0.3295 0.2326 0.2332

ridge mean 0.2367 0.2852 0.2314 0.2312 0.2235 0.2886 0.2337 0.2339

OLS CV (%) 48.22 38.85 85.86 86.01 57.81 28.14 81.11 81.33

MOLS CV (%) 33.86 28.35 37.22 37.64 27.23 19.99 21.77 21.49

ridge CV (%) 17.59 16.33 19.68 19.89 12.01 10.59 11.06 10.94

n n = 103, VIF ~ 103 n = 104, VIF ~ 5 · 103

OLS mean 0.0396 0.1544 0.4080 0.3992 0.0055 0.0232 0.4842 0.4873

MOLS mean 0.1427 0.2842 0.2878 0.2879 0.1333 0.2846 0.2922 0.2921

ridge mean 0.1918 0.2532 0.2667 0.2667 0.1868 0.2476 0.2719 0.2719

OLS CV (%) 172.34 35.47 51.07 52.37 516.04 36.32 44.29 44.04

MOLS CV (%) 13.09 6.07 3.14 3.14 4.12 2.03 0.98 0.99

ridge CV (%) 5.29 3.27 2.08 2.11 1.78 1.00 0.55 0.55

It worth noting some features of the data generated in 
the latter case. With an increase in n, the values of β1 and β2 
change smoothly and stabilize around the values of 0.1322 and 
0.2848 for the MOLS and ridge(0.1) solutions, which one can 
see in Table 3 and Table 4. The level of near-collinearity does 
not significantly affect their values, as it should be. 

At the same time, the OLS β1 and β2  simply tend to zero, 
and their variability clearly increases under the growth of the 
VIF. The values of β3 and β4 change smoothly and stabilize 
around 0.2925 for the MOLS solutions and around 0.2726 for 
the ridge(0.1) solutions, as shown in Tables 3, 4. It seems that in 
the OLS β3 and β4 tend to 0.3 and 0.7, respectively.

That is, it is clearly seen that for these data the OLS solu-
tions are not adequate to the solutions in the population, in any 
case, up to n = 107, although they are economically correct.

This example shows that the OLS can give inadequate 
solutions even for large samples. However, the researcher can 
consider that the OLS solution is correct and consistent since it 



165Проблеми економіки № 1 (47), 2021

Математичні методи та моделі в економіці

seems it is approaching a certain limit with n increasing (in this 
case, to [0; 0; 0.3; 0.7]). However, this limit can be very far from 
the true value in the population, as it is in our last example. At 
the same time, in all the examples considered by us, the MOLS 
and ridge(0.1) methods give stable solutions that are sufficiently 
close to each other and the solutions in the population.

Another conclusion, which follows from Table 4, con-
cerns the adequacy of the LR problem’s solution for small 
samples. From the calculations, it follows that the inclusion of 
a  nonlinear regressor or a regressor with autocorrelation in the 
model significantly increases the variability of the solution for 
all methods. As follows from Table 4, in the presence of non-
linearity and (or) autocorrelation in regressors, the appearance 
of adequate MOLS and ridge solutions is shifted towards large 
sample sizes. Table 4 demonstrates the effect of nonlinearity 
and autocorrelation on the stability of the solution to the LR 
problem. In contrast to strictly linear data, for which the so-
lutions of the LR problem are adequate, starting with sample 
sizes greater than 10-30 ([1; 2] and Table 1 in this paper), the 
presence of nonlinearity or autocorrelation of data can lead to 
the inadequacy of solutions for sample sizes less than 1000. This 

casts doubt on the need to retain explicitly nonlinear regressors 
or regressors with the autocorrelation in a linear model.

To demonstrate the stability of the ridge(0.1) and 
MOLS(0.001) solutions, consider the solution of the LR prob-
lem for actual data, which is considered a benchmark for the 
presence of strong near-collinearity (and the presence of auto-
correlation in one regressor).

Real data.
Let us consider the LR problem’s solution for the real 

data [9, p. 1150, Table F4.2 (The Longley data)]: y – Employ-
ment; x1 – GNP deflator; x2 – GNP; x3 – Armed Forces; x1 – 
Year. The sample size is small enough (n = 16), VIF ≈ 150. 

As one may conclude from [1; 2], we can expect a large 
variability of solutions to the LR problem for the OLS for such 
a small sample. In this article, we will not touch on the issue of 
resampling the real data, but to demonstrate the stability prop-
erties of all mentioned methods for solving the LG problem, we 
will apply a simple method of discarding the last observation 
(the «leave one out» method), as done in [9, p. 131]. Table 5 
shows the OLS, ridge (0.1), and MOLS solutions for the whole 
data and without the last observation.

Table 5

The OLS, MOLS, and ridge(0.1) solutions for the whole Longley's data and that without the last observation

OLS ridge(0.1) MOLS

n 16 15 16 15 16 15

b0 1169088 1459415 -350821 -341932 -410474 -407674

b1 -19.7681 -181.1230 87.7240 82.8068 91.6909 91.8554

b2 0.0644 0.0911 0.0135 0.0145 0.0129 0.0131

b3 -0.0101 -0.0749 0.2067 0.1941 0.1525 0.1450

b4 -576.4643 -721.7561 205.3931 200.9221 235.8999 234.4268

For the OLS, the solutions are strictly the same as in [9, 
p. 131], and we demonstrate them only for convenience. In [9, 
p. 131], the author draws attention to the large percentage of 
changes in the regression coefficients (600, 800) but says noth-
ing about the economic incorrectness of the OLS solution 
at  all.

Without going into details, it can be seen that all regres-
sion coefficients must be positive since all variables increase 
with time. That is, the OLS solution for this problem cannot 
be used in any approach. At the same time, the ridge(0.1) and 
the MOLS provide economically correct solutions that differ 
little from each other. As it should be, the ridge(0.1) method 
gives solutions with smaller absolute values due to the larger 
regularization constant, but the difference is small. The small 
coefficients’ values (b2, b3), which are larger than that of the 
MOLS, are due to the rounding property of the ridge(0.1) 
method. 

As in [9], let us estimate the stability of the ridge(0.1) and 
MOLS methods using the percentage change in the regression 
coefficients when discarding the last observation, which we 
calculate as follows: 16 15 16/ .b b b b∆ = −  For b1 we have for 

the ridge(0.1), 1 5.6 %;b∆ ≈   for the MOLS, 1 0.18 %.b∆ ≈  
For b2 we have for the ridge(0.1), 2 7.4 %;b∆ ≈  for MOLS, 

2 1.6 %.b∆ ≈  For b3 we have for the ridge(0.1), 3 6.1%;b∆ ≈  

for the MOLS, 3 4.9 %.b∆ ≈  For b4 we have for the ridge(0.1), 

4 2.2 %;b∆ ≈  for the MOLS,  4 0.6 %.b∆ ≈  If these estimates 

were statistical, then, as shown in [1; 2], values of the stability 
indicator (CV) less than 10% correspond to a 95% probability 
that the solution is adequate. Based on this, we can assume that 
both methods (MOLS and ridge(0.1)) give adequate solutions 
for the Longley data.

However, judging by the results obtained in Table 4, the 
presence of nonlinearity or autocorrelation in regressors leads 
to a significant increase in the variability of solutions to the 
LR problem. Therefore, it should be recognized that the LOO 
method is yet not equivalent to a repetition of samples for es-
timating the coefficient of variability (CV) of solutions to the 
LR problem.

Yes, indeed, the LOO method testifies to the stability 
of the solution but does not say anything about its adequacy. 
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It is clear that a stable and mathematically correct solution to 
the LR problem reflects the real situation, but this situation 
strongly depends on the sample size. As follows from the calcu-
lations given in Table 4, one should not delude ourselves about 
the adequacy of the solutions to the LR problem obtained in 
Table 5 for the Longley data because of the very small sample 
size (n = 16).

If we examine Longley’s data graphically, we will see that 
the regressors x1, x2, and x4 are practically linear. As for x3, the 
presence of significant autocorrelation is clearly visible. It is 
this regressor that is responsible for the potentially high vari-
ability of the LR solution. Let us say, for economic reasons, it is 
permissible to exclude x3 from the model. A new solution will 
be (VIF ≈ 130):

[ ]
[ ]

( ) [ ]

0 1 2 4

0 1 2 4

0 1 2 4

OLS:  1.1579 06; 21.2785; 0.0642; 570.6641 ;
MOLS:  4.0311 05; 96.3755; 0.0130; 232.0640 ;

0.1 :  3.4517 05; 92.3378; 0.0138; 202.4829 .

b e b b b
b e b b b

Ridge b e b b b

= + = − = = −
= − + = = =

= − + = = =

If we compare this solution with that in Table 4 (with the 
presence of x3), we will see that the regression coefficients for 
the MOLS and ridge(0.1) have practically not changed. How-
ever, the closeness of the data to linear in this case guarantees 
the closeness of the solution for n = 16 to the solution in the 
population even for such a small sample, as shown in [1; 2].

Strictly speaking, in the case of one sample, we can only 
say that both methods give fairly stable and close solutions, 
although they are obtained by different methods. Since both 
mathematical methods are correct and solve the same matrix 
equation but with different regularization constants, the prox-
imity of solutions to each other and their stability guarantees 
the proximity of these solutions to the population’s solution for a 
large enough sample.

Using the ADG, it is easy to show, and this can be seen 
from Table 1, that in the absence of significant collinearity  
(α = 0.2), the OLS solution almost exactly coincides with the 
MOLS solution, but the ridge(0.1) solution is slightly smaller 
in absolute value. With an increase in the data collinearity, the 
OLS solution deteriorates for different data types in different 
ways, but the proximity between the MOLS and ridge(0.1) solu-
tions remains. This gives the right to believe that the similarity 
of the MOLS and ridge solutions guarantees their closeness to 
the solution in the population for a large enough sample. In any 
case, this issue is confirmed by the numerous model experiments 
carried out by the authors, and we can think so until the op-
posite is proved. 

Depending on the problem being solved, the researcher 
can choose which method to use. The ridge(0.1) method is pref-
erable, in our opinion, for small samples of a size less than 40, 
since in this case, it has higher stability of the solutions that is 
important for small samples. Herewith, you will have to come 
to terms with the inevitable rounding of solutions. The studies 
carried out guarantee that there will be no qualitative error, and 
a small quantitative error in the regression coefficients should 
not, as in our mind, affect the results of economic inferences. 
For samples of a size larger than 40, one should, in our opinion, 
use the MOLS(0.001) as more precise.

More reasonably, this problem will be considered in sub-
sequent works using the observed data resampling methods.

Summarizing the above, we note that the compari-
son of the widely known ridge(0.1) method [12] with the new 
MOLS(0.001) method [1; 2] allows us to assert that the prob-
lem of solving the linear regression problem in the presence of 
a near-collinearity has been practically solved in [12; 1; 2] and 
this paper. 

First, two regularization versions of the OLS equation 
are considered, COV and ST. In the COV version, the well-
known ridge method has an approximately constant optimal 
regularization parameter 0.1.optλ ≈  In the commonly used 

ST version, the optimal regularizer had to be 0.1( 1),opt nλ ≈ −  
where n is the sample size. The determination of the optimal 
regularizer for the ridge method finally opens up the possibility 
of its widespread use in practice fifty years after its theoretical 
presentation by the author.

Second, a new method for solving the regularized OLS 
equation, the MOLS, has been proposed in [1; 2], which gives 
a stable solution to the ill-conditioned OLS equation in stan-
dardized variables for any conditioning level with the aid of the 
Modified Cramer Rule [1, App. A], which is fundamentally dif-
ferent from the Cramer Rule used in the ridge method [12] but 
gives practically the same solution to the LR problem for any 
sample size and collinearity level (only for standardized data).

Third, both methods, ridge(0.1) and MOLS, mathemati-
cally correctly solve the same regularized OLS equation, but 
with different regularization constants, 0.1 and 0.001, and give 
stable and close solutions for any degree of data collinearity for 
any sample sizes. 

Fourth, both methods, ridge(0.1) and MOLS give close 
solutions that both tend approximately to the population solu-
tion for any ADG-artificial data with the sample size increas-
ing. 

All the above give reasons to believe that both meth-
ods (ridge(0.1) and MOLS) are approximately unbiased (the 
MOLS to a slightly greater extent than the ridge) and stable 
(the ridge(0.1) to a somewhat greater extent than the MOLS). 
They converge pretty fast to a population solution (in prob-
ability).  This one depends on the degree of linearity of the 
regressors.

With this, the following features of the LR solution were 
clarified. The ridge(0.1) solutions are smoother than the solu-
tions of the MOLS. The more the solutions (the regression co-
efficients) differ from each other in the population, the smooth-
er is the ridge(0.1) solution. However, it is worth noting that the 
difference between the ridge(0.1) and MOLS solutions does not 
significantly affect the economic inferences as to our mind. In 
general, both methods can be used in economic research, but 
one should keep in mind that the ridge(0.1) method is prefera-
ble for very small samples in terms of stability. For medium and 
large samples, the MOLS(0.001) is preferable due to its higher 
accuracy with practically equally acceptable stability. 
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Both methods are more adequate to the population solu-
tion for small sample sizes if the regressors’ collinearity level 
increases. At the same time, the adequacy of the OLS solution 
decreases. 

If the VIF of data is small, about 10-20, the MOLS and 
ridge(0.1) methods practically give the same solutions as the 
OLS. On the other side, the adequacy of all solutions is very 
low due to a significant influence of the uncounted stochastic 
factors, which decrease the VIF and, at the same time, the abso-
lute value of some regressors’ coefficients (those, in which the 
stochastic noise is considerable).

As for the practical use of the ridge method, we note that, 
as shown in the article, it is applicable only in the COV-version 
of the ridge method with a constant regularizer equal to 0.1. 
In the standard version of the ridge method, which is usually 
used in packages, the regularizer depends on the sample size. 
Therefore, before using the ridge method code, it is necessary 
to check which version is used. The easiest way is to solve the 
LR problem for the well-known Longley data with the regular-
izer 0.1 and check the solution against the one given in this ar-
ticle (Table 5). If the solutions do not meet, one should replace 
the regularizer with 0.1(n-1).

In conclusion, note that: 
1)	 both methods (MOLS and ridge(0.1)) are sufficiently 

optimal to stop looking for the exact value of the 
optimal regularizer; 

2)	 the application of both methods give very close 
solutions, which confirm their closeness to the 
solution in the population; 

3)	 both methods make it possible not to discard strongly 
correlated regressors that generate large values of the 
VIF factor; 

4)	 the presence of strongly correlated regressors 
significantly increases the degree of adequacy of 
solutions to the LR problem for small samples.
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Appendix A
The MATLAB code (mcr.m) for the regularized OLS 

equation (2) for the standardized regression model {y, x} – the 
observed data; {Y, X} – the standardized data. β – the beta-
coefficients.
	

1 1
,

1 1
X X I X Y

n n
λ β + =′ ′  − −
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n n
= =′ ′

− −
( , , 1 3).beta mcr A B e= −

1. The Modified Cramer Rule

function ( , , )beta mcr A B lambada=  
n=length(B);H1=A’*A;B1=A’*B; E=eye(size(H1));
H2=lambda.*E+H1;X=zeros(n,1);
for i=1:n; ti=[1:i-1 i+1:n]; H3=H2(ti,ti);H3=H3\eye 

(size(H3));D=0; D1=0;
for k=1:n; tk=[1:k-1 k+1:n]; D=D+(-1)^(i+k)*B1(k)* 

det(H3*H2(tk,ti));
D1=D1+(-1)^(i+k)*H2(k,i)*det(H3*H2(tk,ti)); end; 

X(i)=D/D1; end; beta=X’;
2. The COV-version of the MOLS method  

( 0.001)optλ = :

function [b,beta]=RegMOLS(y,x,lambda)
[n,m]=size(x); my=mean(y);mx=mean(x); sy=std(y); 

sx=std(x); EE=[y x];
EE=standard(EE); % Standardization
YY=EE(:,1); XX=EE(:,2:m+1); BB=XX’*YY; BB=BB/

(n-1);
AA=XX’*XX; AA=AA/(n-1);
beta=mcr(AA,BB,lambda); b=(beta.*sy)./sx; b0=my-

mx*b’; b=[b0 b]; b=b’; beta=beta’;
3. The COV-version of the ridge method  

( 0.1)optλ = :

function [b,beta]=RegRidge(Y,X,lambda)
[n,m]=size(X); my=mean(Y);mx=mean(X); sy=std(Y); 

sx=std(X);
EE=[Y X]; EE=standard(EE); % Standardization
YY=EE(:,1); XX=EE(:,2:m+1); BB=XX’*YY; BB=BB/

(n-1);
AA=XX’*XX; AA=AA/(n-1); 

AA=AA+lambda*eye(size(AA));
beta=AA\BB; b=(beta.*sy)./sx’; b0=my-mx*b; b=[b0 b’]; 

b=b’;
4. Standardization code:

function E=standard(E)
[n,m]=size(E); E=E-ones(n,m)*diag(mean(E)); 

E=E*diag(1./std(E));  

Стаття надійшла до редакції 13.02.2021 р.

 


