
Suggested Citation:
Gryzun, L., Shcherbakov, O., Parfonov, Yu.,& Bodnar, L. (2022). Visualization of algorithms on graphs with a large number of vertices: The
features of applications design. Development Management, 20(4), 36-44. doi: 10.57111/devt.20(4).2022.36-44.

*Corresponding author

Article’s History: Received: 29.08.2022; Revised: 24.11.2022; Accepted: 20.12.2022

Visualization of algorithms on graphs with
a large number of vertices: The features of applications design

Liudmyla Gryzun1*, Oleksandr Shcherbakov1, Yurii Parfonov1, Liliia Bodnar2

1Simon Kuznets Kharkiv National University of Economics
61166, 9A Nauka Ave., Kharkiv, Ukraine
2South Ukrainian National Pedagogical University named after K.D. Ushynsky
65020, 26 Staroportofrankivska Str., Odessa, Ukraine

Vol. 20, No. 4. 2022UDC 519.1
DOI: 10.57111/devt.20(4).2022.36-44

DEVELOPMENT MANAGEMENT

Jornal homepage: https://devma.com.ua/en

 INTRODUCTION
Graph theory makes a powerful theoretical basis for mod-
elling relationships between objects and solving variety of
practical problems in different subject domains. In com-
puter science, graphs are one of the most common and
widely used data structures. Current complex scientific and
technical problems expect to store and process huge data
amount for their solutions. By far, a lot of graph algorithms
have been developed which enable to solve great range of
problems: from search of the shortest ways to the optimis-
ation and numerical problems.

There are some cases, when it is quite complicated
to use or modify the algorithm without its visualization

which gets even more urgent when the problem expects us-
ing graphs with big number of vertexes (and edges, corre-
spondingly). For instance, the graph representation of the
car network of a developed European state or a big univer-
sity social network may demand tens of thousands graph
vertexes and edges.

Thus, it makes obvious the urgency of the extension
of the investigations in the lines of revealing core develop-
ment features of the applications which enable visualiza-
tion of big graphs and design of a module providing unified
Application Programming Interface (API) for visualization
of any graph algorithm.

Abstract. The task of visualization of large graphs as a special data structure and algorithms on them is considered by
scientists and practitioners as a complex and non-trivial problem. The analysis of scientific works and existing software
applications that implement similar functions of the subject domain testifies the relevance of expanding exploration
in the lines of identifying the features of the development of applications for the visualization of large graphs and
algorithms on them. The formulation of features and recommendations for the development of such software and
presentation of the software module designed by the authors is the aim of the article. In the course of the work, the
main features of the development of a program for the visualization of graphs with a large number of vertices were
identified and formulated using methods of analysis and graph theory. Special recommendations on the essence of
each of the stages of development of such applications were provided and those steps that are most important for
developers in terms of the complexity of processing and visualization of large graphs, metrics of their layout in the
application screen, etc. were identified. A software module developed by the authors, that provides a unified application
programming interface for visualizing any algorithm on graphs, which allows to save time working on utility software
and focus more on solving algorithmic problems is also presented. The presented module was developed by the authors
taking into account the identified recommendations. A comparative analysis of the developed software module and
analogues was carried out, which proved the extended functionality of the module for the visualization of graphs with
a large number of vertices. The module is a practically valuable tool for data structures researchers and other experts
working on graph algorithms, since it enables data visualization at debugging software and simplifies the analysis of
large data structures

Keywords: large graphs; problems of algorithms visualization; a module for visualization of algorithms on graphs; graph
layout; unified Application Programming Interface

Copyright © The Author(s). This is an open access article distributed under the terms of the
Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/)

Development Management. 2022. Vol. 20, No. 4

Gryzun et al.

37

According to studies [1; 2], a graph with large number
of vertices (or so called “large graph”) is a graph with ap-
proximately 10K vertices and/or edges. The way the graph
is presented on the screen is called graph layout. In fact,
this is the result of a graph visualization algorithm that po-
sitioned all the vertices on the screen.

The researchers D. Lande and I. Subach [1], V. Babkov,
M. Serik [2], O. Demianchuk [3] emphasize core problems
of large graphs visualization, which are readability, speed
and algorithmic complexity. In this context, the research-
ers S. Iguana [4], F. Beck [5], A. Noack [6] emphasize the dif-
ficulties of aesthetic metrics determination for the criteria
of “good” layout.

There are distinguished three main ways to visualize a
graph: dimension reduction approach [4; 5], force-direct-
ed and energy-based approach [6], and features-based lay-
out which are analysed in terms of speed concerns in the
papers [7-9], where it is admitted that graph visualization
algorithms mostly have bad algorithmic complexity (qua-
dratic or cube one).

Thus, the analysis of the research papers [1; 3; 4] and
existing applications which implement similar functions of
the subject domain [4; 9] enables to testify, that despite the
variety of scientific papers related to graph visualization
problems, and, consequently, the number of software ap-
plications based on those researches, none of them has an
option to visualize advanced or custom algorithms using
API. The best analogues that have been found, could only
display predefined algorithms and usually only basic ones
(Depth First Search (DFS) [10], Dijkstra [11], etc.). They do
not have sufficient functionality that can be used mostly
for educational purposes.

Therefore, it can be concluded that the proceeding and
visualization of large graphs is an urgent issue. In addition,
in some cases graph data can be dependent on external fac-
tors and the basic algorithm should be modified to tackle
the problem properly, which often causes new mistakes
and bugs. The most efficient way to find them is to repre-
sent the data visually. Development of such applications is
really time-consuming and focuses rather on implement-
ing utility applications than working on real tasks solving.

Thus, the aim of this work was to reveal the core de-
velopment features of an application for visualization of
graphs with large number of vertices, and represent the
authors’ software module that provides a unified API to vi-
sualize any graph algorithm to save time working on utility
software and focus more on solving problems.

 MATERIALS AND METHODS
The set of theoretical and practical methods were used
during the work. The theoretical literature analysis al-
lowed to reveal the challenges of visualization of graphs
with large number of vertices and the development of an
application for this purpose.

Graph theory methods and exactly graph visualization
algorithms were used at the initial stages of the application
design and were taken into account at the formulation of
the core features of its development.

There were used three main ways to visualize a graph
which are characterised below: force-directed and ener-
gy-based approach, dimension reduction approach, and
features-based layout. Force-directed and energy-based

approach includes the family of methods based on phys-
ical systems simulation. Vertices are treated as charged
particles that repulse each other, and edges model elastic
strings. These methods simulate the dynamics of this sys-
tem or find out a minimum of energy. Important methods of
this family are ForceAtlas [9], Fruchterman-Reingold [10],
Kamada-Kawai [11] and OpenOrd [12]. The last one uses
optimisation techniques to speed up computation. As a
useful side effect, graph gets more clustered. Such meth-
ods typically provide good result, and final plots reflect the
graph layout very well. However, they are also computa-
tionally hard and have a lot of parameters to adjust, which
was taken into consideration at their usage.

According to dimension reduction approach [4], a
graph can be defined as an adjacency matrix N×N, where N
is the number of nodes. This matrix can also be considered
as a table of N objects in N-dimensional space. This rep-
resentation allows to use general-purpose dimension-re-
duction methods (UMAP, tSNE, PCA, and others). Another
way to do it is to calculate theoretical distances between
nodes and then to conserve proportion moving to lower-di-
mensional space. The ideas of this approach were also rel-
evantly used at the appropriate stages of the application
design discussed below. Approach of features-based layout
is based on the idea that graph data reflect some objects of
the real world. Thus, vertices and edges can have their own
features according to object properties, real-life condi-
tions, etc. Therefore, these features were used to represent
them on the plane. It was possible to deal with node fea-
tures as with usual tabular data using dimension reduction
approaches or drawing a scatter plot for pairs of features.

It is important to emphasise the problems of these
approaches implementation which arise in terms of speed
concerns. For instance, one of the most common algo-
rithms from force-directed set of algorithms, the Fruchter-
man-Reingold [10], in its regular variant has a total runtime
of O(|V|2+|E|), where |V| is the number of vertices in a graph
and |E| is the number of edges connecting the vertices. The
grid-variant of this algorithm allows to reduce its runtime
to O(|V|+|E|): it divides the graph plot area into a grid of
squares and applies repulsion forces between the nodes in-
side of adjacent squares, excluding the iteration of nodes
further away. However, it is admitted that this runtime is
only achieved in a best-case scenario, remaining quadratic
for the worst-case scenario. Among the force-directed fam-
ily, it was also developed the GEM algorithm [6] with the
expectation to outperform in terms of runtime both the
Kamada-Kawai algorithm and the Fruchterman-Reingold
algorithm. According to [12-14], the total runtime of the
GEM algorithm is O(|V|(|V|2+|E|)).

Similar level of complexity is inherited also to the al-
gorithms of dimension reduction approach. For instance,
Principle Component Analysis (PCA) algorithm has two
computationally crucial steps: computing the covariance
matrix and computing the eigenvalue decomposition of
the covariance matrix. The computational complexity of
the covariance matrix computations is O(NM×min(N, M)),
which is a result of multiplying two matrices of size M×N
and N×M, respectively. The worst-case complexity of the
algorithms of eigenvalue decomposition is O(M³) for a ma-
trix of size M×M. Therefore, the overall complexity can be
estimated as O(NM×min(N, M)+M3 [15].

Development Management. 2022. Vol. 20, No. 4

Visualization of algorithms on graphs...

38

At the stage of design and development of the said
module contemporary specialised software and systems
such as Figma, Simple and Fast Multimedia Library (SFML),
Texus’ Graphical User Interface (TGUI) library, and C++
were used. The peculiarities of their usage are described in
details in the relevant subsections of the work.

 RESULTS AND DISCUSSION
The core features development of an application for visual-
ization of graphs with large number of vertices can be for-
mulated and characterised as following steps.

Source: developed by the authors based on [14-16]

Table 1. Graph data structures comparison for each of three ways of representation

One of the basic steps for such an application is to pro-
vide users an ability to build a graph which later will be
used for algorithm visualization. The three most common
ways to represent a graph using data structures are adja-
cency list, adjacency matrix, and incidence matrix. Graph
data structures comparison for each of three ways in terms
of complexity of basic operations (graph storing, addition
(removing) of a vertex, addition (removing) of an edge,
etc.) are given in the Table 1 using big O notation (|V| is the
number of vertices in a graph and |E| is the number of edges
connecting the vertices).

Adjacency list Adjacency matrix Incidence matrix

Store graph O(|V|+|E|) O(|V|2) O(|V| · |E|)
Add vertex O(1) O(|V|2) O(|V| · |E|)
Add edge O(1) O(1) O(|V| · |E|)

Remove vertex O(|E|) O(|V|2) O(|V| · |E|)
Remove edge O(|V|) O(1) O(|V| · |E|)

Adjacency check O(|V|) O(1) O(|E|)

Conclusions
Slow to remove vertices and

edges, as it is necessary to find
all vertices or edges

Slow to add or remove vertices,
as matrix must be resized/

copied

Slow to add or remove vertices
and edges, as matrix must be

resized/copied

The core peculiarity of this step which should be taken
into account is the following. Since graphs used by the po-
tential application are expected to have a large size (>10 000
vertices) it is crucial not to have a storage overhead. For this
reason, an adjacency list is a preferred way to store graph data.

Graph visualization itself, being a complicated prob-
lem, determines its own peculiarities which should be
minded by the developers. The application on this pur-
pose should at least implement feature-based layouts. At
the same time, support of other methods would be recom-
mended for advanced versions of the application.

As it is expected to visualize a custom algorithm on a
graph, it is necessary to provide users with such an ability.
For this reason, there should be realised an API that helps
to create an algorithm steps file to reproduce these steps
later in the application.

One of the important features of such applications de-
velopment is prediction of its possible using for education-
al purposes and for quick verification of basic graph prop-
erties such as connectivity, looking for bridges, etc. In this
context, it is recommended to implement some basic graph
algorithms like Breadth First Search (BFS) [17], DFS, etc.

In this context, it is also relevant to follow the criteria
of “good” graph layout. It is important to apply some aes-
thetic metrics offered in research [4]:

(1) There should be minimum of edges intersection, as
too many intersections make the layout look messy.

(2) Adjacent vertices should be closer to each other
than not adjacent ones, as connected nodes in such a way
will look also closer, which is true in graph by definition.

(3) The set of vertices (communities) should be grouped
into clusters and they should look like a dense cloud.

(4) There should be minimum of edges and nodes over-
lapping.

Other researchers [5; 6] also formulated additional aes-
thetic criteria for graph visualization, such as reduction of

visual clutter, reduction of spatial aliases and maximisation
of compactness. It is also concluded that in real practical
use, some of these criteria are in conflict with each other.

In terms of proving the choice of the technological
tools for the application development, it is relevant to keep
in mind some ideas. One of the important features of the
application functionality is to make it easier to debug dif-
ferent algorithm implementations. Since different devel-
opers can use different Operational Systems, it will be a
right decision to make the software cross-platform. On the
other hand, the application of this purpose is going to deal
with huge amount of data and to have the options for po-
tential extension in the future. Therefore, requirements for
the programming language include high performance and
preferably it should be object-oriented to simplify the in-
troduction of new features. Thus, all of these requirements
are met by C++ [18]. Since C++ standard library does not
provide tools for work with graphics, there should be a set of
libraries chosen for this purpose. In particular, SFML [19] is
helpful to create a display window and most of the graphics.
TGUI [20] library allows to provide a proper user interface.

Both of these libraries support multiple platforms
which is essential for a tool like this. The list of supported
platforms includes Windows, Linux, macOS, and even An-
droid is partially supported.

Development is preferably to be performed using a Li-
nux-based operating system, as it provides a lot of tools [21]
to facilitate the development process.

The application of such a purpose has to be open-
source, due to the important benefits of this approach:
users from all over the world can contribute to the tool
development, there is feedback mechanism on both imple-
mentation details and code quality, possibility for end-us-
ers to modify the application according to their needs.

The revealed and formulated features of development
of the applications for visualization of graphs with large

Development Management. 2022. Vol. 20, No. 4

Gryzun et al.

39

number of vertices made a necessary theoretical and tech-
nological base for design of a module that provides a unified
API to visualize any graph algorithm to save time working
on utility software and focus more on solving problems.

Developed module does not contain any databases, as
they are not applicable in this scenario. Instead of it, data
interchange formats and solutions are applied, as it was
presented above. A graph is represented in a text format
and visualization steps include two core stages.

At the first stage, the graph is stored in a METIS-based
graph representation format, which is going to be extend-
ed since the module is expected to cover all possible graph
types in future. Possible options for graph types that will
be supported are: directed/undirected, edge-weighted,
node-weighted.

As it was pointed out, since proceeding graphs are ex-
pected to have over >10 000 vertices and are not going to
be stored overhead, an adjacency list was chosen as a way
to store graph data.

A graph G=(V, E) with N vertices is stored in plain text
format in a file with N+1 lines. First line contains two inte-
gers N and F that specify vertex number and a graph format.

Since there are several possible combinations of graph
types (which can be extended later), it was decided to use
a common programming technique to store this informa-
tion in a single integer where each bit specifies whether
some feature is used or not. For example, if one attribute
has a value of 0x08 and another one 0x02 to specify that
the graph will use both of them, a bit-wise OR is applied to
these values and the resulting number (10 in this case) will
be stored as a graph type. All these calculations will be defi-
nitely done behind the scenes and the user will be provided
with a user-friendly API. If the graph edges are weighted
value should contain 0x01, in case of node weights 0x02,
if the nodes’ position can be specified via coordinates (can
be used in case of feature-based layouts and also to restore
vertex positions after the graph building stage) 0x04, di-
rected graphs contain 0x08.

The remaining N lines of the file store information
about the current graph structure. In particular, the i-th
line contains information about the i-th vertex. Depend-
ing on the value of F, the information stored in each line is
somewhat different. In the most general form (when F=15)
each line has the following structure:

c x y v1
 w1

 v2
 w2…, (1)

where c – node weight, xy – corresponding coordinates on
the plane, vi – vertex adjacent to the current one and wi –
weight of the edge to the adjacent vertex.

Next, visualization step, which collects information
about every pass of the visualization process (for example,
highlighting vertices and nodes). Some algorithms may re-
quire more sophisticated situations to visualize (such as par-
titioning levels [22]), but the majority of algorithms do not
need it. Thus, provided functionality of a module is sufficient.

To enhance user experience, the API provides an op-
portunity to combine several visualization steps into
groups. It is caused by the fact that, if for the sake of sim-
plicity, there was used BFS [22] as an algorithm to analyse,
there is no need to examine every topology check, and it
will be enough to observe the state of the graph only af-
ter every algorithm iteration. JavaScrip Object Notation

(JSON) as a data storing approach was preferred to native
one, as it allows serialization of custom objects and also
supports arrays, which is crucial in this case.

Following the formulated features of technological
tools, the module was developed by the authors in C++
language with attraction of SFML and TGUI libraries, and
using a Linux-based operating system.

In this part of the work the developed module is char-
acterised.

Since the module architecture is complex and it is hard
to see all the details in one diagram, every software compo-
nent is discussed separately.

The starting point of the program is the Application
class which structure is presented in Figure 1 in the form of
diagram and built by the authors in the course of the mod-
ule design. It contains the main loop, handles the fram-
erate, and delegates user events to other classes. Window
class gathers user events, and handles camera movement
and everything related to updating and displaying the main
window of the application. To keep the user’s screen clean
and not messy the program is working in a single-window
instance and creates additional windows only to notify user
about wrong usage of the software. StateManager allows to
transit application from one state to another.

There are three main states which correspond to three
main screens of the application:

1) MainMenuState is a simple screen that allows
choosing whether the user wants to run a graph visualizer
or a graph builder;

2) GraphBuilderState (Fig. 2) is a screen that allows us-
ers to build a graph manually. It has several modes such as
‘Hand’, ‘Add vertex’, ‘Add edge’. It is much easier to build a
graph using a UI tool rather than writing down raw values
into a plain text file.

3) VisualizationState, which is the most complicated
part of the module. It includes graph layout algorithms,
and sample graph algorithms to demonstrate the work of
the application and allows to visualize an algorithm pro-
vided by the user.

IGraphAlgorithm interface is used for predefined algo-
rithms within the program. For example, as shown in Fig-
ure 3, there are two basic algorithms that were implemented
for software testing purposes. Both of them implement run()
method which executes the algorithm using the provided
graph and returns a record for the visualization process.

Graph class contains an adjacency list which is essen-
tially a vector of vertices. Each vertex contains a list of out-
going topologies (in other words, all adjacent vertices), and
a colour specified to this vertex. Graph class also includes
ResourceProvider which is a useful utility that provides
shapes for vertices and edges.

AlgorithmRecorder class is designed to store and to re-
play the visualization process on a graph. This class is also
provided in the application’s API in order to allow users to
create algorithm steps data.

The module developed according to the core features
formulated above was tested on purpose of verification of its
functional requirements. As a result, it was possible to con-
clude that the designed software module meets all of them.

The developed module is implemented on the basis of a
desktop application (exactly the Ubuntu 20.04 distribution),
which is one of the most popular Linux-based distributions.

Development Management. 2022. Vol. 20, No. 4

Visualization of algorithms on graphs...

40

Figure 1. Diagram of fundamental classes
Source: developed by the authors in the course of the module design

-window_:Window
-stateManager_:StateManager -
gui_:std::shared_ptr<tgui::Gui>

- timePerFrame:sf::Time

Application
Window

“use”

handleEvent(const sf::Event& event)
update(const sf::Time& time)

predrawing()
display()

isOpen():bool

+run()
-handleEvents()

-update(const sf::Time& time)

“use”

StateManager
<<enumeration>> State

“use” gui_:tgui::Gui
currentState_:std::unordered_map<State, +MAIN_MENU

+VISUALIZATION

“use”

<<interface>> IApplicationState

+initGui(tgui::Gui& gui)
+ handleEvent(const sf::Event& event)

+update(const sf::Time& time)

-window_:sf::RenderWindow
-camera_:sf::View

+ handleEvent(const sf::Event& event)
+update(const sf::Time& time)

+draw(sf::RenderTarget&)
-startGraphBuilder()

Figure 2. Diagram of GraphBuilderState
Source: developed by the authors in the course of the module design

<<interface>> IApplicationState

+initGui(tgui::Gui& gui)
+ handleEvent(const sf::Event& event)

+ update(const sf::Time& time)

GraphBuilderState

-graph_:Graph

+InitGui(tgui::Gui& gui)
+ handleEvent(const sf::Event& event)

+ update(const sf::Time& time)
+ draw(sf::RenderTarget&)

Graph

-type_:GraphType
AdjacencyList

+addVertex(VertexId from)
+ addEdge(VertexId from, VertexId to)
+ highlightVertex(VertexId, sf::Color)

+ highlightEdge(VertexId from, VertexId to, sf::Color color)
+ vertexCount():size_t

+ storeToFile(const std::string& filename)

“use”

“use”

Development Management. 2022. Vol. 20, No. 4

Gryzun et al.

41

According to the set goals, the core development fea-
tures of an application for visualization of graphs with large
number of vertices are revealed and formulated, which is a
unique result that has not been highlighted in the research
sources before.

The formulated features of development of the appli-
cations were used as a theoretical and technological base
for design of the software module (presented above) that
provides a unified API to visualize any graph algorithm to
save time working on utility software and focus more on
solving problems. In terms of practical significance of the
work, the module designed following the said features and
peculiarities makes a valuable tool for data scientists and
other experts who are specialised in working on graph al-
gorithms, as it enables data visualization for debugging
and analysing large data structures.

In comparison with other applications that realize simi-
lar functions of the subject domain which characteristics are
covered in [4; 9; 12; 23], the developed module has advanced
functionality in terms of visualization of graphs with large
number of vertices, that can be characterised as follows.

The module provides reading graph from a file: a prop-
erly written graph data is read and displayed successfully.
In case of incorrectly written/corrupted file, the user is no-
tified that file doesn’t meet file format requirements.

API to write graphs and algorithm steps to correspond-
ing files programmatically is realized, and it works properly
producing valid files.

Algorithm provided by a user is visualized correctly. In
case of invalid file, the proper notification is displayed.

A graph is built with the help of graph builder, and
manual building of files is present. Manually built graph
can be stored in a hard drive correctly. Sample algorithms
(BFS and DFS) are provided for visualization tool. Both of
them validate input and warn user in case of invalid input.

Random graph generation is also provided by the
module and works properly: graph can be generated with
predefined number of vertices and edges; advanced graph
layout visualization algorithms is implemented; Fruchter-
man-Reingold layout is calculated correctly.

Selected episodes of the module work according to its
functionality are presented in Figures 4-7.

Comparative characteristic of the developed software
module with other applications which realise similar func-
tions of the subject domain is generalised in the Table 2.
The characteristic is done based on the papers [4; 9; 12; 23]
and the module functionality presented above.

Figure 3. Diagram of IGraphAlgorithm interface
Source: developed by the authors in the course of the module design

<<interface>>
IGraphAlgoritm

+run(const Graph& graph) const :
AlgorithmRecorder

BFS

+run(const Graph& graph) :
AlgorithmRecorder

DFS

+run(const Graph& graph) :
AlgorithmRecorder

Figure 4. Algorithm visualized using external API
Source: developed by the authors

Figure 5. BFS algorithm input validation
Source: developed by the authors

Figure 6. Randomly generated graph
Source: developed by the authors

Development Management. 2022. Vol. 20, No. 4

Visualization of algorithms on graphs...

42

Figure 7. Result of applying Fruchterman-Reingold layout
Source: developed by the authors

Table 2. Comparative characteristic of the developed software module with analogues

Application name Visualgo USFCA
visualizer Gephi Graphia Developed software

module

Platform Web application Web application
Desktop

(Windows/
MacOS/Linux)

Desktop (Windows/
Linux)

Desktop (the Ubuntu 20.04
distribution)

Inputs a custom graph Only manual No Yes
Only converting
graph formats of

other applications
Yes

Visualizes predefined
algorithms Yes Yes No Yes Yes

Supports different types
of graph visualization No No Yes

It has only one
force-directed layout

and very limited
ways to tune it

Yes

Reads graph from a file
and visualizes it No No No No Yes

API to write graphs
and algorithm steps to

corresponding files
No No No No Yes

A graph is built with the
help of graph builder,

and manual building of
files

No No No No Yes

User’s algorithm is
visualized No No No No Yes

Notes

Not applicable
for big graphs
due to support
of only manual

input. It is
seen as a good

educational tool.

Poor
functionality.

Can be used only
to get familiar

with some basic
algorithms, but

the previous
analogue deals
with it much

better.

Advanced
visualization

tool. Extremely
good for data

scientists.
However, does

not provide
algorithm

visualization.

Rendering options
are not good for

large graphs.

Performed using Linux-
based operating system

and all advantages of C++.
Implements feature-based
layouts, at the same time,
supporting other methods.
Has advanced functionality

in terms of visualization
of user’s large graphs and

their algorithms.

Source: developed by the authors

The table analysis testifies that the developed mod-
ule has advanced functionality in terms of visualization of
graphs with large number of vertices in comparing with the
analogues presented in the papers.

 CONCLUSION
According to the aim of the work, the main features of the
development of an application for visualization of graphs
with large number of vertices were revealed and formulated.
The core steps of the applications development along with
their characteristics recommended to mind in the progress
of design of such software were distinguished and detailed.

The software module designed by the authors following
the mentioned above features is presented with the details
of its development and characteristics of its core functions.
It provides a unified API to visualize any graph algorithm
to save time working on utility software and focus more on
solving problems. Therefore, in practical aspects, the devel-
oped and presented software module makes a valuable tool
for data scientists and other experts who are specialised
in working on graph algorithms, as it enables data visual-
ization for debugging and analysing large data structures.

In addition, the comparative analysis of the developed
module and the analogues has been realised in the paper.

Development Management. 2022. Vol. 20, No. 4

Gryzun et al.

43

 REFERENCES
[1] Lande, D., & Subach, I. (2021). Visualization and analysis of network structures. Kyiv: Igor Sikorsky Kyiv Polytechnic

Institute, Politekhnika.
[2] Babkov, V., & Serik, M. (2011). Methods of visualization of data of complex structure based on tree-like maps. Scientific

papers of Donetsk National Technical University. Series: Informatics, Cybernetics and Computer Science, 14(188), 163-170.
[3] Demianchuk, O. (2022). Principles of data visualization. Retrieved from https://dou.ua/forums/topic/39157/.
[4] Iguana, S. (2019). Large graph visualization tools and approaches. Retrieved from https://towardsdatascience.com/

large-graph-visualization-tools-and-approaches-2b8758a1cd59.
[5] Beck, F., Burch, M., & Diehl, S. (2009). Towards an aesthetic dimensions framework for dynamic graph visualisations.

In 2009 13th International Conference Information Visualisation (pp. 592-597). Barcelona: IEEE. doi: 10.1109/IV.2009.42.
[6] Noack, A. (2019). Energy models for graph clustering. Journal of Graph Algorithms and Applications, 11(2), 453-480.

doi: 10.7155/jgaa.00154.
[7] Schwab, M., Strobelt, H., Tompkin, J., Fredericks, C., Huff, C., Higgins, D., Strezhnev, A., Komisarchik, M., King, G., &

Pfister, H. (2017). An education system with hierarchical concept maps and dynamic nonlinear learning plans. IEEE
Transactions on Visualization and Computer Graphics, 23(1), 571-580. doi: 10.1109/TVCG.2016.2598518.

[8] Wilke, C. (2019). Fundamentals of data visualization: A primer on making informative and compelling figures. Sebastopol:
O’Reilly Media Inc.

[9] Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a continuous graph layout algorithm for
handy network visualization designed for the gephi software. PLoS ONE, 9(6): article number e98679. doi: 10.1371/
journal.pone.0098679.

[10] Fruchterman, T.M.J., & Reingold, E.M. (2014). Graph drawing by force-directed placement. Journal of Software:
Practise and Experience, 21(11), 1129-1164. doi: 10.1002/spe.4380211102.

[11] Cheong, S., & Si, Y. (2015). Accelerating Kamada-Kawai for boundary detection in mobile ad hoc network. ACM
Transactions on Sensor Networks, 13(1), article number 3. doi: 10.1145/3005718.

[12] Shawn, M., Brown, W.M., Klavans, R., & Boyack, K.W. (2011). OpenOrd: An open-source toolbox for large graph layout.
Visualization and Data Analysis 2011. Proceedings of the SPIE, 7868, article number 786806. doi: 10.1117/12.871402.

[13] Frick, A., Ludwig, A., & Mehldau, H. (1995). A fast adaptive layout algorithm for undirected graphs (extended abstract
and system demonstration). In Tamassia, R., Tollis, I.G. (Eds.), Graph Drawing (pp. 388-403). Berlin: Springer.
doi: 10.1007/3-540-58950-3_393.

[14] Sund, D. (2016). Comparison of visualization algorithms for graphs and implementation of visualization algorithm for
multi-touch table using JavaFX. Linköping: Linköpings Universitet.

[15] Banerjee, A. (2020). Computational complexity of PCA. Retrieved from https://alekhyo.medium.com/computational-
complexity-of-pca-4cb61143b7e5.

[16] Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., & Wagner, D. (2010). Combining hierarchical and
goal-directed speed-up techniques for dijkstra’s algorithm. ACM Journal of Experimental Algorithmics, 15, article
number 2.3. doi: 10.1145/1671970.1671976.

[17] Holdsworth, J. (1999). The nature of breadth-first search. Townsville: James Cook University.
[18] Meyers, S. (2014). Effective modern C++. Newton: O’Reilly Media.
[19] SFML documentation. (n.d.). Retrieved from https://www.sfml-dev.org/documentation/2.5.1/.
[20] TGUI documentation. (n.d.). Retrieved from https://tgui.eu/documentation/.
[21] Shotts, W. (2019). The Linux command line: A complete introduction. (2nd ed.). San Francisco: No Starch Press.
[22] Kurant, M, Markopoulou, A., & Thiran, P. (2010). On the bias of BFS (Breadth First Search). In 2010 22nd International

Teletraffic Congress (ITC 22) (pp. 1-8). Amsterdam: IEEE. doi: 10.1109/ITC.2010.5608727.
[23] Shynhalov, D. (2018). Investigation of the software for analysis and visualization of social graph structures. Control,

Navigation and Communication Systems. Academic Journal, 5(51), 128-131. doi: 10.26906/SUNZ.2018.5.128.

The analysis testifies that the authors’ software module has
advanced functionality in terms of visualization of graphs
with large number of vertices.

The developed software has lots of points for an ex-
tension due to its well-designed interface and topic depth.
There can be applied new layout algorithms, and extended
support for other graph features such as multilevel par-

titioning, multigraphs, etc. Nevertheless, performance
improvements will be crucial to support graphs with even
bigger amounts of vertices and edges. In addition, the tool
can be optimised (for example OpenGL can be used in-
stead of SFML) in order to work with graphics on a lower
level. The mentioned extensions can prove the prospect of
further research.

Development Management. 2022. Vol. 20, No. 4

Visualization of algorithms on graphs...

44

Візуалізація алгоритмів на графах з великою кількістю вершин:
особливості проєктування застосунків

Людмила Едуардівна Гризун1, Олександр Всеволодович Щербаков1,
Юрій Едуардович Парфьонов1, Лілія Василівна Боднар2

1Харківський національний економічний університет імені Семена Кузнеця
61166, просп. Науки, 9А, м. Харків, Україна
2Південноукраїнський національний педагогічний університет імені К.Д. Ушинського
65020, вул. Старопортофранківська, 26, м. Одеса, Україна

Анотація. Завдання візуалізації великих графів як спеціальної структури даних та алгоритмів на них розглядається
вченими і практиками як складна і нетривіальна проблема. Аналіз наукових робіт та існуючих програмних
додатків, що реалізують подібні функції предметної області, засвідчує актуальність розширення розвідок у
напрямках виявлення особливостей розробки додатків для візуалізації великих графів та алгоритмів на них.
Формулювання особливостей і рекомендацій щодо розробки такого програмного забезпечення та представлення
спроєктованого авторами програмного модуля є метою статті. У ході роботи за допомогою методів аналізу та
теорії графів виявлено та сформульовано основні особливості розробки програми для візуалізації графів з
великою кількістю вершин. Надано окремі рекомендації щодо сутності кожного з етапів розробки таких додатків
та виявлено ті кроки, які є найбільш важливими для розробників у термінах складності обробки та візуалізації
великих графів, метрик їх розташування на екрані додатку тощо. Також представлено розроблений авторами
модуль, який забезпечує уніфікований інтерфейс програмування додатків для візуалізації будь-якого алгоритму
на графах, що дозволяє заощадити час на роботі над службовим програмним забезпеченням і більше зосередитися
на розв’язанні алгоритмічних задач. Представлений модуль розроблено авторами з урахуванням виявлених
особливостей та рекомендацій. Проведено порівняльний аналіз розробленого програмного модуля та аналогів,
який засвідчив розширену функціональність модуля щодо візуалізації графів з великою кількістю вершин. Модуль
є практично значущим інструментом для дослідників у галузі структур даних та інших експертів, які працюють
над алгоритмами на графах, оскільки дає змогу візуалізувати дані при налагодженні програмного забезпечення та
спрощує аналіз великих структур даних

Ключові слова: великі графи; проблеми унаочнення алгоритмів; модуль візуалізації алгоритмів на графах;
компонування графа; уніфікований програмний інтерфейс

