\mathcal{A} -р. техн. наук С.М. Логвинков, канд. техн. наук О.Н. Борисенко, канд. техн. наук И.А. Остапенко 1

(Харьковский национальный экономический университет, г. Харьков, Украина;

 ${}^{1}\Pi AO$ «Кондратьевский огнеупорный завод»,

пос. Алексеево-Дружковка, Донецкая обл., Украина)

Термолиз фенолформальдегидных связующих корундографитовых огнеупоров

Распространение практики применения фенолформальдегидных связующих в технологиях углесодержащих огнеупоров обусловлено высокой прочностью отвержденных полимерных композиций, значительным их коксовым остатком при термообработке и пониженным содержанием свободного фенола в современных марках смол.

Фенолформальдегидные полимеры являются представителями наиболее изученных частосетчатых полимеров, но вопрос их конкретного химического строения остается дискуссионным. Некоторые проблемные позиции удалось разрешить Кондращенко В.И. [1] благодаря применению метода атомных констант при выполнении компьютерных оптимизационных процедур по варьированию пяти типов «элементарных» структур, характерных для фенолформальдегидных полимеров (рис. 1).

Рис. 1. Химическая структура отвержденной фенолформальдегидной смолы [1]

Для прояснения ряда моментов структурных перестроек фенолформальдегидных связующих ($\Phi\Phi$ C) при температурных воздействиях, собственно при термолизе, могут быть

полезны аналоги в закономерностях пиролиза твердых горючих ископаемых, коксования углей и других видов топлива [2-4]. Целесообразность применения аналоговых принципов в анализе пиролиза $\Phi\Phi$ С несомненна. Но только при учете влияния качественного и количественного состава композиции. Конкретные ингредиенты композиции на $\Phi\Phi$ С не остаются инертными при термообработке, реагируют между собой и с продуктами термолиза $\Phi\Phi$ С, обусловливая определенные по знаку и величине тепловые эффекты и внося существенные особенности в общий механизм термолиза. При этом лимитирующие стадии отдельных видов взаимодействий находятся в сильной зависимости от характера газовой среды и характеристик порового пространства композиций, которые постепенно изменяются в соответствующих температурных режимах. Некоторые из значимых особенностей механизма структурно-фазовых изменений для корундографитовых композиций на $\Phi\Phi$ С применением табулярного глинозема в разрабатываемой технологии бикерамических плит шиберных затворов ранее установлены [5-7], что создает необходимые предпосылки для более детального анализа возможных путей развития термолиза $\Phi\Phi$ С в таких изделиях.

Целью работы является анализ общих закономерностей термолиза ФФС в составе корундографитовых огнеупоров и развитие представлений о механизме структурнофазовых преобразований молекул органических веществ ФФС в зависимости от температуры.

Решение вопроса сопоставимости структурной устойчивости вероятных органических соединений базировалось на правиле «слабого звена» — деструкция молекулы при термонагружении происходит по направлениям, требующим направленной деформации связей. Следствием из этого правила является определенное структурное подобие исходного соединения и продуктов термодеструкции, сто традиционно отмечается для процессов пиролиза твердых топлив [2]. Энергетическая оценка путей термолиза ФФС производилась с учетом средней энергии связи атомов в молекулах различных веществ (Дж/моль):

Н-Н	431,0;
Н-Салифатические	425,1;
Н-Сароматические	391,6;
C=O	263,6;
C=C	535,6:
Салифатические-Сароматические	333,2;
$C_{\text{алифатические}}$ - $C_{\text{алифатические}}$	297,5;
Сароматические- Сароматические	406,7.

Анализ процессов газообразования проводился на основе результатов хроматографии проб в соответствии с данными [2] по изучению выхода и состава газа при различных температурах пиролиза углей.

Термические процессы в различного рода в твердых горючих материалах имеют значительное сходство временных стадий или характерных температурных интервалов [2 – 4]. Результаты термографического анализа проб корундографитовых композиций на ФФС [7] подтверждают возможность выделения при их термолизе аналогичных стадий:

- 1. Сушка (до 200 250 °C), в ходе которой испаряется физическая влага и десорбируются газы (CO_2 , CH_4);
- 2. Первичная деструкция полимера и формирование низкотемпературных смолистых веществ (250 350 °C), часто сопровождаемая воспламенением;
- 3. Размягчение и развитие пластических деформаций (350 500 °C), которое реализуется за счет образования значительного количества летучих продуктов смол и газов (в т.ч. парафиновые углеводороды и фенолы) с одновременным ослаблением связей между макромолекулами и разрывом некоторых оптических связей;
- 4. Полукоксование (500 600 °C), характеризуемое уплотнением структуры, в т.ч. за счет диспергации твердых частиц в пластичной массе и снижения интенсивности образования низкокипящих смол и других летучих соединений;
- 5. Коксование (600 1000 °C), которое сопровождается незначительным образованием смол, моноциклических ароматических углеводородов и водорода при продолжении спекания продуктов термолиза.

Следует отметить, что в отличии от твердых горючих ископаемых, в полимерах на основе ФФС как новолачного типа, так и резольного типа, - количество боковых цепей невелико, углеводородные атомы встроены в объем сетчатой структуры полимера (фенол может реагировать с формальдегидом в орто-, мета- и пара- положениях) и на поверхность обращены в основном гидроксильные группы. По этой причине полимеры на основе ФФС относятся к трудновоспламеняемым и трудносгораемым [3], дают значительный коксовый остаток, менее подвержены пластическим деформациям на 3 стадии термолиза и, меньшую вероятность образования дефектов соответственно, имеют структуры, обнажающих новые поверхности материала к взаимодействию с окружающей средой. Преимущественное удаление гидроксильных и отдельных карбоксильных групп, а также отрыв менее представленных периферийных групп, с входящими в них гетероциклическими кольцами и алифатическими цепями, - относятся к первичным процессам термолиза. Наиболее вероятен отрыв от основной полимерной матрицы циклов, имеющих с нею кислородные, эфирные и тиэфирные связи. Это следует из сравнения содержания серы, азота и кислорода в составе полимера при термолизе – после 1 часа пиролиза при 350 °C остается около 62 % серы, 45 % азота и 30 % кислорода.

Первичные процессы термолиза происходят на 1 – 3 стадиях и обуславливают

образование значительного количества свободных валентных связей и возможность участия радикальных остатков во взаимодействиях между собой с уплотнением структуры и параллельным формированием конденсированных смолистых веществ. При этом может происходить и деструкция комплексов многоядерных углеводородов, в первую очередь — через расцепление нафтеновых колец и образованием парафиновых углеводородов. В частности, известно [2], что для соединений типа тетралина при термодеструкции характерно разрушение нафтенового кольца:

$$CH_2 \longrightarrow CH_2 + CH_2 = CH-CH_2-CH_3;$$

$$CH_2 \longrightarrow CH_2 + CH_2 + CH_2 + CH_2 + CH_2 + CH_3 + CH_2 + CH$$

Парафиновые углеводороды образуются не только из небольшого количества обрывков боковых цепей матричной части полимера на основе ФФС, но и из продуктов расцепления нафтеновых колец, а также за счет частичного гидрирования образующихся олефинов водородов, выделяющимся при термолизе. К 500 °С термодинамическая вероятность процессов гидрирования снижается и более выгодными становятся реакции дегидрирования нафтенов и циклоолефинов. Так, для циклогексана вероятны реакции:

$$\begin{array}{c} CH_{2} \\ H_{2}C \\ CH_{2} \\ CH_{2} \end{array} \longrightarrow \begin{array}{c} CH_{2} \\ H_{2}C \\ CH_{2} \\ \end{array} \longrightarrow \begin{array}{c} CH_{2} \\ H_{2}C \\ CH_{2} \\ \end{array} \longrightarrow \begin{array}{c} CH_{2} \\ CH_{2} \\ \end{array} \longrightarrow \begin{array}{c} CH_{2} = CH_{2} + CH_{2} = CH - CH = CH_{2} \\ CH_{2} \\ \end{array} \longrightarrow \begin{array}{c} (2) \\ (3) \\ \end{array}$$

Более сложные многоядерные соединения – ароматические смолы, образуются преимущественно в более высокотемпературной области.

Оценочный расчет энергии активации термолиза до 350 °C, выполненный нами по скорости удаления летучих соединений из корундографитовых композиций на ФФС в соответствии с термограммами [7], дает значение 70,3 кДж/моль. Это значение на 6,6 % ниже аналогичной величины для фактически идеально стуктурированного полимера (соотношение фенола и формальдегида 1:1; смола получена с щелочным катализатором; ступенчатое термическое отверждение с изотермическими выдержками: 0,25 часа при 94 и 107 °C, а затем 0,5 часа при 127 °C и нагрев за 3 часа до 260 °C с выдержкой 2 часа; содержание углерода 77 %, водорода – 6,1 % и кислорода (по разности) – 16,9 %). Пиролиз этого полимера проводился в вакууме на специальной аппаратуре в Национальном бюро стандартов США и по результатам масс – спектроскопического анализа в отобранных суммарных фракциях (– 80 °C – 25 °C) пиролиза при 350 °C не отмечалось присутствие H₂, CO₂, CH₄. при этом

содержание CO_2 всего 0,5 %, а основными летучими продуктами являлись ацетон (6,7 %), пропилен (4,0 %), пропанолы (10,9 %) и бутанолы (2,9 %), чем обосновывался основной вклад в выделение свободных H_2 , CO, CO_2 и CH_4 полной деструкцией бензольного кольца, а также превалирующий характер разрыва связи, отмеченной пунктирной линией:

В нашем случае смола новолачная марки СП 1001/3, полученная в кислотной среде и отверждаемая с применение уротропина, что в комплексе с наличием в корундографитовой композиции ингредиентов с фосфатными и сульфатными кислотными группировками, обуславливает существенные структурные особенности из-за образования гетеросвязей с участием кислорода, хлора, серы и фосфора. По влиянию на огнестойкость полимерных материалов различных типов фосфор и галогенсодержащие соединения относят к универсальным антипиренам [3, 8]. Несмотря на то, что галогенсодержащие полимеры при термодеструкции уже на 1-3 стадиях теряют основное количество галогенового компонента с образованием галогеноводородов, молекул галогенов и реже сложных летучих соединений, наличие галогенов в газовой среде эффективно ускоряет процесс формирования коксового остатка и снижает общие потери массы. По мнению [3], замена группировок P - O - R на P -R снижает горючесть полимеров и аналогичный эффект достигается с уменьшением длины алкильной цепи R, заменой алкильной группы на фенильную или на арамотические и циклические группировки у атомов фосфора. Вместе с тем, эффект ускорения коксования обусловлен формированием защитных слоев полифосфатов, снижающих доступ кислорода и внутренним слоем материала. Поэтому фосфатные, как и сульфатные [3], группировки способны сохранятся в композиции до более высокотемпературных стадий термолиза, а совместное присутствие галогенсодержащих групп облегчает образование производных фосфатных кислот (вероятность разрыва связи О -С в группе Р - О - С выше), например, фосфоновых кислот по механизму реакции:

$$=P(O)OR + HCl \rightarrow =P(O)OH + RCl.$$
 (5)

Отмеченный выше характер влияния кислорода, серы, фосфора и хлора на термолиз полимеров обуславливает наличие (об. %): $CO_2 - 6.0$; CO - 4.3 и $H_2 - 3.1$ в составе летучих компонентов в наших корундографитовых композициях (350 °C, изотермическая выдержка 1 час). Соответственно, следует учитывать возможное участие указанных элементов в составе

конденсированных продуктов до более высоких температур. Анализ энергии связей C-C и C-H указывает, что в составе образовавшихся смолистых веществ алифатические соединения будут подвергаться деструкции по связи C-C без образования кокса, а ароматические соединения – по связи C-H с образованием поликонденсированных систем в результате ряда последовательных преобразований: малоциклические ароматические соединения \to высшая ароматика \to асфальтены \to конденсированная ароматика \to карбены \to карбоиды. Условные границы между отдельными поликонденсированными системами этого ряда иногда устанавливают по степени воздействия на них растворителей [2, 9], например, карбены растворимы в сероуглероде, а карбоиды – уже не растворимы ни в одном растворителе.

Парафиновые углеводороды с примерно одинаковой термодинамической вероятностью могут разлагаться на две молекулы меньшего размера — одну непредельную, другую предельную или на две непредельные с отрывом молекулы H_2 , которые и далее реагируют вплоть до полного образования водорода, сравнительно устойчивого метана и частично этана. Вместе с тем, парафиновые углеводороды и олефины могут вступать в реакции полимеризации и циклодегидрогенизации, являясь одним из источников образования ароматических углеводородов:

$$CH_{3}-(CH_{2})_{5}-CH_{3} \xrightarrow{-H_{2}} H_{2}C \xrightarrow{CH_{2}} CH_{2} \xrightarrow{-CH_{4}-2H_{2}} CH_{2}$$

$$CH_{3}-(CH_{2})_{5}-CH_{3} \xrightarrow{-H_{2}} H_{2}C \xrightarrow{CH_{2}} CH_{2} \xrightarrow{-CH_{4}-2H_{2}} CH_{2}$$

$$CH_{3}-(CH_{2})_{5}-CH_{3} \xrightarrow{-H_{2}} H_{2}C \xrightarrow{-CH_{2}} CH_{2} \xrightarrow{-CH_{4}-2H_{2}} CH_{2}$$

$$(6)$$

Нафтеновые углеводороды в составе первичной смолы при 700 – 800 °C также способны к дегидрированию с образованием ароматических углеводородов, формирование продуктов реакции (2) сменяется на более выгодные продукты реакции (3).

Конденсация малоциклических ароматических углеводородов при повышении температуры на 4 и 5 стадиях термолиза приобретает доминантный характер. Образование высших ароматических соединений реализуется подобно реакциям синтеза нафталина (7) и антрацена (8):

$$+ 2C + 2H_2, \tag{7}$$

$$CH_3 + H_3C + 3H_2.$$
 (8)

Образование еще более многоциклических ароматических соединений (пирена,

пирилена и др.) происходит с участием продуктов реакции типа (7, 8) по аналогичным механизмам. Гидроароматические и гетероциклические соединения также могут образовываться по механизму реакций дегидрирования, которые характерны для образования карбазола:

$$\begin{array}{c}
-H_2 \\
NH_2
\end{array}$$

$$\begin{array}{c}
-H_2 \\
NH
\end{array}$$

$$\begin{array}{c}
NH
\end{array}$$

$$\begin{array}{c}
(9)
\end{array}$$

Уплотнение сетчатых структур в полимерах на основе ФФС обеспечивается тенденцией образования ароматических соединений и их конденсацией, в основном, за счет реакций дегидрирования. Разрыв кольца с образованием непредельных углеводородов (10) или до непосредственного образования углерода (11), – маловероятны:

$$C_2H_4 + C_4H_8;$$
 (10)
 $3(-C=C-) \longrightarrow 6C + 3H_2.$ (11)

Выше сказанное обосновывается тем, что образующиеся в (10) олефины термодинамически менее стабильны в сравнении с ароматическими углеводородами в рассматриваемом интервале температур [2], а реакция (11) может развиваться лишь при боле высоких температурах и этим обстоятельством объясняется малое образование графита по сравнению с ароматическими углеводородами в коксовых печах.

После завершения первичных процессов термолиза остаточный кислород сохраняется в продуктах преимущественно в виде гетероциклических соединений, в частности, кумарона. Соединения на 4 и 5 стадиях термолиза также участвуют в общей тенденции образования высококипящих ароматических соединений за счет реакций конденсации и изомеризации при взаимодействии с более простой ароматикой. Например, кумарон в реакции с бензолом образует фенантрен (12), а с нафталином – хризен (13):

Серосодержащие соединения претерпевают ряд превращений в направлении

образования сероводорода и лишь в небольшом количестве могут оставаться в продуктах термолиза, в основном, как продукты взаимодействия с антиоксидантными добавками, например, $Al_2(SO_4)_3$. Реакции разложения сульфидов в рассматриваемом начальном интервале температур сопровождаются образованием меркантанов и олефинов:

$$R-CH2-CH2$$

$$R-CH2-CH2SH + RCH=CH2.$$
(14)

В более высокотемпературном интервале обеспечивается разложение меркантанов до выделения сероводорода и сажистого углерода:

$$CH_3$$
- CH_2 - CH_2 - CH_2 - $SH \rightarrow C_2H_4 + 2H_2 + 2C + H_2S.$ (15)

Восстановительная газовая среда 4 и 5 стадий термолиза в совокупности с возможным присутствием галогенов способствует синтезу из антиокислительных добавок сначала оксикарбидов, а затем карбидов металлов. Сажистый углерод конденсируется в форме графитовых монослойных структур на различных компонентах корундографитовой композиции и существенно повышает ее прочность. Повышению прочности на заключительных стадиях термолиза способствует и возможность восстановления других добавок композиции с образованием карбидных соединений, в том числе в структуре матричной части корунда, кальцинированного и спекающего глинозема. Добавки в корундографитовой композиции в форме солей органических и неорганических кислот участвуют в термолизе, но не изменяют общую направленность 4 и 5 стадий – парафины и олефины первичной смолы, а также значительная часть одноядерных нафтеновых углеводородов полностью разлагаются. Фенолы частично образуют кокс, ароматические углеводороды И низкие фенолы. Алкилированные ароматические углеводороды претерпевают отрыв алкильных боковых цепей с параллельной конденсацией ароматических углеводородов и фенолов в многоядерные ароматические соединения. Дегидрирование многоядерных нафтенов также обеспечивает образование соответствующих ароматических углеводородов с их конденсацией и уплотнением коксового остатка. Альдегиды, кетоны и низкомолекулярные кислоты в составе первичной смолы ступенчато разлагаются с образованием газов:

$$H-C \stackrel{O}{\downarrow} \longrightarrow CO + H_2,$$
 (16)

$$CH_3-C \stackrel{O}{\swarrow}_H \longrightarrow CH_4 + CO,$$
 (17)

CH-COOH
$$CH_4 + CO_2$$
, (18) $H_2O + H_2C = C = O$.

Первичные амины при термолизе могут образовывать нитрилы, водород, этилен и аммиак:

$$CH_2=CH_2 + NH_3,$$
 (20)
 $C_2H_2-CH_2NH$ $CH_3-C=NH+H_2$ (21)
 $CH_3-C=N+2H_2.$ (22)

Ди- и триметиламины при $800 \div 1000$ °C образуют [2] водород или метан и цианистый водород, например:

$$(CH3)3N \rightarrow HCN + 2CH4.$$
 (23)

Таким образом, фактически все компоненты корундографитовых композиций на ФФС участвуют в сложных взаимодействиях на различных стадиях термолиза, которые удается анализировать лишь на качественном и сопоставительном уровне структурно-фазовых преобразований.

Библиографический список

- 1. Кондращенко В.И. Оптимизация составов и технологических параметров получения изделий брусковатого типа методом компьютерного материаловедения: атореф. дис. на соискание ученой степени докт. техн. наук: спец. 05.23.05 «Строительные материалы и изделия» / В.И. Кондращенко. М., 2005. 48 с.
- 2. Тютюнников Ю.Б. Раздел «Технология» курса «Техника и технология»: Конспект лекций / Ю.Б. Тютюнников, Л.М. Салтевская. Харьков: Изд. ХНЭУ, 2000. Ч. 2. 104 с.
- 3. Кодолов В.И. Горючесть и огнестойкость полимерных материалов / В.И. Кодолов. М.: Химия, 1976. 157 с.

- 4. Фиалков А.С. Формирование структуры и свойств углеграфитовых материалов / А.С. Фиалков. М.: Металлургия, 1965. 288 с.
- 5. Логвинков С.М. Бикерамические плоты шиберных затворов с применением табулярного глинозема в корундографитовом рабочем слое / С.М. Логвинков, Д.А. Бражник, А.Н. Корогодская, И.А. Остапенко // Збірник наукових праць ВАТ «Укр. НДІ Вогнетривів імені А.С. Бережного». − 2011. − № 111. − С. 37 46.
- 6. Логвинов С.М. Выбор рационального гранулометрического состава безобжиговых огнеупоров / С.М. Логвинков, А.Н. Корогодская, Г.Н. Шабанова [и др.] // Будівельні матеріали, вироби та санітарна техніка. К.: Знання. 2011. № 39. С. 52 57.
- 7. Логвинов С.М. Фазовые изменения модифицированных корундографитовых материалов при термообработке / С.М. Логвинков, Д.А. Бражник, А.Н. Корогодская [и др.] // Збірник наукових праць ВАТ «Укр. НДІ Вогнетривів імені А.С. Бережного». 2012. № 112. С. 59 67.
- 8. Babyak L. Conversion of C_4 fraction of hydrocarbon pyrolysis over ZVM + 2 % Zn high-silica zeolite / L. Babyak, O. Matsyak, V. Shevchuk // Chemistry & Chemical Technology. 2011. V. 5, N_2 1. P. 95 99.
- 9. Мадорский С. Термическое разложение органических полимеров / С. Мадорский [Пер. с англ., под ред. С.Р. Рафикова]. М.: Мир, 1967. 328 с.