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The problem of equal-chord partitioning of a 

plane curve is applied from domains such as com-

puter vision, robotics, signal processing, geo-

graphic information systems, and digital manu-

facturing. The proposed partitioning method is 

based on the intersection between a curve and a 

circle of constant radius centered on this curve, 

followed by moving the center to the intersection 

point. The designed algorithm consists of the fol-

lowing procedures: the procedure for the initial 

initialization of the radius of a circle based on a 

partition with a uniform distribution by a param-

eter, procedures for partitioning the curve by a 

circle for different directions of the circle`s move 

(direct, reverse, two-way); the procedure for ob-

taining an equal-chord partition with a specified 

tolerance of determining the chord length. For 

the real curve`s example, experiments were con-

ducted on it equipartition by this algorithm, im-

plemented in the Julia programming language, 

known for its high performance and ease of use in 

scientific computing. 

Keywords: pseudocode, iteration, computational 
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equation. 
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EQUIPARTITION ALGORITHM FOR A FLAT 

PARAMETRIC CURVE BASED  

ON THE INTERSECTION BETWEEN IT AND  

A MOVING CIRCLE 

Introduction. The problem of discretization of continuous 

geometric objects, a common issue in computational geom-

etry, has broad interdisciplinary applications. From com-

puter vision to robotics, signal processing, curve simplifi-

cation in computer graphics applications, geographic infor-

mation systems, and digital manufacturing applications, 

the need for the discretization and segmentation of plane 

curves is evident. These methods primarily aim to solve the 

problem of dividing the curve into 'homogeneous' segments 

with the same characteristics, such as equal length or cur-

vature, or to minimize a predetermined error. This interdis-

ciplinary approach underscores the broad applicability of 

the research and its potential impact across various fields. 

The condition of partitioning the curve into points when 

the lengths of the chords connecting the segments are equal 

is an additional factor of practical interest. It allows, for ex-

ample, to simplify the reproduction of a curve on CNC ma-

chines thanks to the constancy of the tool feed speed [1] or 

the reproduction of the movement of an object based on a 

video recording [2]. Therefore, the study of equal-chord 

segmentation methods, particularly their potential imple-

mentation in computer design and digital manufacturing 

systems, geoinformation systems, and computer vision sys-

tems, is of significant importance. 

This work aims to develop new algorithms for partition-

ing flat parametric curves under the condition of equality 

of chords (chord length connecting segments of the parti-

tion) given the two outside points included in the first and 

last segment and given a number of segments. The re-

search's novelty lies in applying an iterative procedure 

within the algorithm for partitioning a planar curve using a 

moving circle. The circle's radius is initialized based on a 

parameter-uniform curve segmentation, followed by radius 

adjustment to correct for uneven partitioning errors. With 

an increase in the number of segments, the proposed algo-

rithms demonstrate linear complexity, which is much better 

than known solutions. 

https://doi.org/10.34229/2707-451X.25.1.2
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Related work. Numerous works are devoted to partitioning curves into segments, highlighting various 

methods, algorithms, and criteria for partitioning according to the specifics of the solved tasks. Among the 

significant works, it is possible to distinguish two sets: 1) works that examine curves already represented by 

a discrete sequence of points and 2) works that investigate the discretization of continuous curved lines 

represented in mathematical expressions. 

Algorithms of adaptive partitioning of curves, represented by an ordered discrete set of points, make it 

possible to cut the original series of points by polyline segments with smaller nodes. Works [3–14] are 

devoted to this topic. 

The algorithm presented in [3–5] is based on calculating the divergence, which is recognized by the 

maximum distance between the original curve and the broken one. At the initial stage, this method finds the 

point that is farthest from the segment connecting the initial and final points of the curve, compares the 

divergence with the specified error –  , and in the case when this divergence is greater than ε, recursively 

calls itself on the sets of points from initial to the given and from the given to the final and so forth. 

Algorithm [6] considers the partitioning condition in the form of the extremum of the ratio of the area 

of the curve bounded by the arc and the chord to the length of the chord. 

In [7], an approach to choosing the number of points k located on the segmentation site was proposed. 

To find the correct value of k, they determined the best straight line for each k-point arc of the curve and 

calculated the root mean square error corresponding to that fit. This approach was developed in the work 

[8]. In [9], the method of polygonal approximation of a discrete curve based on the minimization of the 

integral root mean square error of approximation is considered. 

In the study [10], an iterative approach was used to select the points of a discrete curve based on deter-

mining the admissible sector of the angles of a polyline segment starting at the current point of a given 

discrete set. In work [11], this algorithm was improved by optimizing it using the dynamic programming 

method. 

An algorithm to determine dominant points by calculating the difference between the squares of the 

lengths of the curve's arc and the chord was considered in [12]. The article [13] proposed a heuristic ap-

proach to selecting initial dominant points with the subsequent insertion of additional dominants, provided 

that the required approximation accuracy was ensured. 

In [14], an algorithm is considered that selects a subset of k from n points so that the difference in arc 

length between the approximation and the original curve is minimized. Given a limit of arc length diver-

gence, the algorithm selects a subset of the minimum number of points necessary to bring the curve closer 

to this limit. No smaller subset of the starting points can reach this limit. 

The works [15–22] are devoted to the algorithms for discretizing curved lines presented in a parametric 

or vector form. 

In [15], the adaptive sampling algorithm of parametric curve approximation nodes is considered. At the 

same time, the following procedure is performed: 

• The initial uniform selection of discretization nodes obtains the original ordered set of curve points. 

• The output set is divided into intervals. 

• For each interval, internal nodes are checked according to the chosen strategy for determining local 

flattening. 

• Depending on the result of the check, the interval is either divided into two parts with a further 

recursive flattening check, or the extreme points of the interval are stored in a separate list of nodes that 

meet the flattening criterion. 

The following criteria for checking local flattening are applied [15]: 

• The area of the triangle formed by the two outside points and one inner point from the interval is 

relatively small. 



O. FROLOV 

14 ISSN 2707-4501. Кібернетика та комп'ютерні технології. 2025, № 1 

• The angle formed by the outside left – P, inner – R, and outside right – Q points of the interval are 

obtuse and close to 1800. 

• The distance from the inner point R to the chord PQ, which contracts the outside points, is small. 

• The expression P Q R Q    is approximately equal to P Q . 

• Tangents to the curve at points P, R, and Q are approximately parallel. 

The uniform sampling of the points from the parametric curve by the length of the arc is a fairly common 

problem from the point of view of practical applications. Such discretization in the case of polynomial 

curves requires numerical integration [16–18], which complicates implementation on specific devices. In 

[19], a method with an initial random sampling of curve points was considered to simplify the implementa-

tion. 

The selection of curve points (in particular, NURBS) based on their reparameterization depending on 

curvature or mixed parameterization depending on arc length and curvature with equal weights was consid-

ered in [20]. A similar approach to the selection of curve points is given in [21], where the arc length and 

the bending energy of the curve (which depends on the square of the curvature) were taken as a mixed 

criterion. In [22], an asymptotically optimal approach is considered, where the number of sampling points 

is chosen depending on the distribution function similar to the curvature and is minimal for a given error of 

polygonal approximation of the curve. The mentioned methods [20–22] require numerical integration and 

solution of a system of nonlinear equations. 

Papers [23–26] have focused on the problem of equal chord curve partitioning. The work [23] is theo-

retical and represents proof of the existence of an equipartition. The study [24] is more voluminous. In 

addition to theoretical material, an algorithm based on the piecewise linear approximation of the distance 

functions of two points of the curve was proposed. The work also analyzed the inequality errors of the 

partition's chords and the algorithm's computational complexity and presented the experimental results of 

the equipartitions. In the work [25] of the same authors, the abovementioned approach to partitioning under 

equality of distances was applied to polygonal approximation of curves in spaces of any dimensions under 

equality of approximation errors. In work [26], which concerns coating products of complex shapes on CNC 

machines by surfacing, an interpolation method called ECLD (equi-chord length deposition) was used. The 

ECLD algorithm uses the sequential determination of the curve parameter corresponding to the chord whose 

length differs from the specified one by a value that is less than or equal to the permissible error. In this 

case, partitioning with a fixed step and binary search is used to obtain the parameter's value. The example of 

the Rhinoceros 3D system of Robert McNeel & Associates should be given regarding the implementation of 

equal-chord partitioning in computer modeling and design systems. This system uses a curve-splitting tool – the 

divide command, which has options for equal chord lengths (EqualChordLength) [27]. 

The problem setting. Partitioning a parametric curve on the Euclidean plane into segments equal in 

chord length in the "classical" formulation [23, 24] was considered.  

Let the equation of the curve be given in vector form 

( )tp p .               (1) 

It is necessary to determine the intermediate values 0 1 2 1  n nt t t t t      at the given interval of 

the curve parameter change 0[ , ]nt t t  such that when substituting them into equation (1), we get the sequence 

of points –  0 1 2 1P P ,  P ,  P ,  ,  P ,  Pn n  

P ( ), ( 0,1, , )i it i n p ,             (2) 

for which the condition of segment equality is satisfied: 

1 2   ,nd d d              (3) 

where is the Euclidean distance from point 0P  to point 1P , etc. 
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Thus, a flat curve on the interval 0[ ], nt t  is divided into n equal chord length segments. The problem of 

the existence of such a partition was proved in [23, 24]. 

The proposed approach to solving the problem is based on the simple idea of dividing a flat curve by 

the imaginary movement of a constant radius circle along this curve. The circle successively intersects the 

curve from the side of the movement direction with the subsequent transfer of the center to the obtained 

point of intersection. If the center of the circle's initial position is placed at the start or end point of the curve, 

then to divide it into n parts, it is necessary to make n–1 such intersections. 

To obtain an equal partition of the curve in this way, the following problems have to be solved: 

1) determination of the circle radius so that it is equal to the length of the chord under condition (3); 

2) point selection in cases where there is more than one point of a curve and a circle intersection in the 

corresponding direction. 

The radius of the moving circle for a specific plane curve depends on the number of partitions. However, 

the second problem depends on the first problem's solution and the direction choice. 

Fig. 1 illustrates the dependence of intersection points on the circle's radius. Comparatively small 

changes in the radius of the circle can give one (a circle with the intersection point 
/
1Pi ), two (a circle with 

the points 
1
1Pi  and 

2
1Pi ), three (circle with points 

1
1Pi , 

2
1Pi , 

3
1Pi ) and even more points intersection with 

the curve. 

Fig. 2 makes it clear how, depending on the moving direction, the intersections that give the same 

common chord of the curve will determine different other points of intersection. So, the circle with the 

center at the point Pi  gives three intersection points in a straight direction (fig. 2,a) 
3
1Pi . If you move the 

center of the circle to the point 
3
1P Pj i , then the circle of the same radius at the intersection with the curve 

in the opposite direction (fig. 2,b) will remain, except for the point 
3

1Pj , which coincides with Pi , the points 

1
1Pj  and 

2
1Pj , which differ from the points 

1
1Pi  and 

2
1Pi . 

 

 
 

FIG. 1. Dependence of intersection points for the curve and the circle on the radius 
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        a                                                b 

FIG. 2. Dependence of the intersection points location for the curve and the splitting circle on the moving direction 

Since the presence of several intersection points significantly complicated the algorithm, within the 

framework of this study, the task was limited to solving the problem of determining the radius, assuming 

that there is only one point of intersection in the moving direction. In practice, this assumption is achieved 

starting from some value of n for a given interval of a specific curve. Therefore, the cases with existing 

multivalued intersection points are limited by n, which depends on the curve's properties and the segmenta-

tion interval's choice. 

The proposed algorithm. The following approach is proposed for calculating the radius of a circle: 

 In the first stage, the circle's radius is determined, ensuring segmentation with the intersection 

points' location on the curve inside the given interval. At the same time, we will have n – 1 segments equal 

in chord length and a remainder, the chord length of which needs to be calculated; 

 In the second stage, the value of the division radius is adjusted based on the difference between 

the received chord length of the remainder and the current radius of the circle. The splitting process is re-

peated with the new adjusted radius, and so on, until the difference between the chord of the remaining 

segment and the splitting radius is reduced to an acceptable error. 

The algorithm presented in fig. 3 was used to implement the initialization procedure for the partition 

radius. This algorithm is based on the uniform parameter`s discretization for the given curve`s interval and 

calculating the lengths of all chords. The initial value of the circle's radius is taken as the statistical charac-

teristic of the obtained chord sequence. Such a characteristic can be this sequence's minimum, average, or 

median value. The computational complexity of the initialization algorithm is O (n). 

After obtaining the initial value of the radius, it is necessary to split the curve directly by moving the 

circle. Since we already have two outside points of the curve, between which n-1 segmentation points need 

to be defined, we can move the circle in three ways: 

 The partition begins from the circle's movement to the outside point corresponding to the value of 

the parameter 0t  – fig. 4,a. After making 1n  steps, we will get a partition and the remaining last segment 

between the points corresponding parameter`s values 1nt   and nt . This version of the algorithm will be 

conventionally called the direct move; 

 The partition begins from the circle's movement to the outside point corresponding to the param-

eter nt  value- fig. 4,b. After making the 1n  steps, we will get a partition with the remaining first segment 

(between the points corresponding to the parameter`s values 0t  and 1t ). This version of the algorithm will 

be conventionally called the reverse move; 
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 The partition starts from outside points ( 0t  and nt ), and two circles move toward each other – 

fig. 4,c. Let the circle move from the point corresponding to the parameter`s value t0 and make the 1n  inter-

section steps. Then, the circle moving from the opposite direction must make 1– –1n n  intersection steps. 

The remaining segment will be located between the points corresponding to the parameter values 
1nt  and 

1 1nt  . This version of the algorithm will be conventionally called the two-way move. 

INITIATE-RADIUS(t0, tn, n, params) 

In:  Starting point parameter value 0t , finish value of parameter nt , n – number of segments in 

partition, params – list of curve’s shape parameters. 

Out: Initial circle radius r for evaluating partition. 

Local: Sequence P 0 1 2P ,P ,P , , Pn   of 1n  points for uniform parameter step partition, sequence 

D 1 2, , , nd d d   of n segment length for uniform parameter’s step partition. 

1:  0– /nuniform step t t n   // calculate uniform step 

2: for  0i n   do 

3:      0 ,  iP t uniform step i params   p  // calculate curve’s point for partition 

4: end for 

5: for  1i n   do 

6:     1P Pii id   // calculate the length of i-th segment 

7: end for 

8: r d  // mean of D 

9: return r 

FIG. 3. Algorithm for initialization of the circle`s radius 

 

 
 

FIG. 4. Three methods of partitioning a curve by moving a circle: a – direct move; b – reverse move; c – two-way move 

b 

c 

a 
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Fig. 5 presents an algorithm for direct and inverse partitioning of a flat curve by moving a circle. This 

algorithm sequentially calculates the coordinates of the intersection points based on the FIND-ROOT pro-

cedure. This procedure implements finding the intersection point between a circle and a curve, which de-

pends on the curve's parametric form and the equation's solving method. The intersection equation in vector 

form has the following form: 

( ) cit r p p ,       (4) 

where cip  is the current position of the circle's center, and r is the partition radius. From this equation, the 

FIND-ROOT procedure must determine its root, which is between the values of cit  and nt  for the direct move 

( 0t  and cit  – for reverse). The obtained parameter`s value is then used to calculate the intersection point 

coordinates according to the parametric equations and where the circle's center is moved on the next loop 

iteration. Since obtaining the intersection between a circle and a curve takes a constant amount of time, the 

computational complexity of this algorithm depends on the number of partitions, which is  O n . 

PARTITION1(t0, tn, n, r, params) 

In: Starting point parameter value t0, second value of parameter nt  for solver’s initial conditions 

interval –  0 , nt t , n – number of segments in partition, circle radius r for evaluating partition, 

params – list of curve’s shape parameters. 

Out: Sequence P 0 1 2P ,P ,P , , Pn  of 1n  partition points and corresponding sequence T 

0 1 2, , , , nt t t t  of parameter’s values. 

Local: start – index of starting point, stop – endpoint index, step is 1 for direction from 0t  to nt  and 

–1 – otherwise. 

1: if 0 nt t  then // check direction to initiate parameters 

2:     start ← 0 

3:     stop ← n – 2 

4:     step ← 1 

5: else  

6:     start ← n 

7:     stop ← 2 

8:     step ← –1 

9: end if 

10: 
0P  = p( 0t , params) // evaluate outside points 

11: Pn  = p( nt , params)  

12: for i ← start…stop do 

13:     i stept   ← FIND-ROOT( Pi , it , params, r) // solve equation of an intersection circle and curve  

14:     Pi step  ← p( i stept  , params) // evaluate inside points 

15: end for 

16: return P, T 

FIG. 5. Pseudocode for the algorithm of partitioning a flat curve by direct or reverse move 

Fig. 6 presents the algorithm for the two-way partition of a flat curve with a circle. Unlike the previous 

algorithm, this algorithm is adapted to receive only the partition's starting point and direction. To implement 
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a complete partition iteration, the algorithm must be called twice with the input parameter values corre-

sponding to the left and right outside points and the number of segments 1n  and 1  1n n  . The order of 

the calls does not matter because they are independent. 

PARTITION2(ts, n, r, direction, params) 

In:  First point parameter value st , n – number of segments in partition, circle radius r for evaluat-

ing partition, direction is Boolean value (TRUE for direction from start point, FALSE – from 

endpoint), params – list of curve’s shape parameters. 

Out: Sequence P 0 1 2P ,P ,P , , Pn  of 1n  partition points and corresponding sequence T 

0 1 2, , , , nt t t t  of parameter’s values. 

Local: start – index of starting point, stop – endpoint index, step is 1 for direction from 0t  to nt  and 

–1 – otherwise. 

1: if direction = TRUE then // check direction to initiate parameters 

2:     start ← 0 

3:     stop ← n – 1 

4:     step ← 1 

5:     0P  = p( 0t , params) // evaluate outside point 

6: else  

7:     start ← n 

8:     stop ← 1 

9:     step ← –1 

10:     Pn  = p( nt , params) // evaluate outside point 

11: end if 

12: for i ← start…stop do 

13:     i stept   ← FIND-ROOT( Pi , it , params, r) // solve equation of an intersection circle and curve 

14:     Pi step  ← p( i stept  , params) // evaluate inside points 

15: end for 

16: return P, T 

FIG. 6. Pseudocode for the algorithm of partitioning a flat curve by a two-way move 

The complete procedure for equal chord partitioning a flat curve by a circle for direct or reverse move 

is presented in fig. 7. It is based on the previously described algorithms of the radius initial initialization 

(INITIATE-RADIUS) and partitioning the curve by a circle (PARTITION1). After assigning an initial ra-

dius value, this algorithm successively calculates the points of the curve partition by the circle in a while 

loop. After each partition, the remaining segment chord length is defined, and then the difference between 

it and the circle's radius is obtained. 

Based on comparing the received error value with the permissible value of the partition unevenness, the 

algorithm decides to continue partitioning with the adjusted radius value or stop iterating with the received 

points of equal-chord partition. To change the radius, a uniform distribution of error between all segments 

was used: 

r r
n


  ,                  (5) 

where Δ is the difference (error) between the chord of the residual segment and the radius of the partition 

circle and r  is the "old" (previous) value of the radius; note that formula (5) gives the same result as  
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averaging the chord length over all segments. The computational complexity of the proposed algorithm 

depends on the number of partition points and is O(k⸱n). Here, k denotes the number of iterations required 

to achieve the given tolerance (evenness of partitioning). 

EQUAL-PARTITION1(t0, tn, n, e, params) 

In:  Starting point parameter value 0t , finish value of parameter nt , n – number of segments in 

partition, absolute tolerance e for difference between segments length, params – list of 

curve’s shape parameters. 

Out: sequence P 0 1 2P ,P ,P , , Pn of 1n  partition points and corresponding sequence T 

0 1 2, , , , nt t t t  of parameter’s values. 

Local: Circle the radius r for evaluating the partition, the nd  – distance from (n-1)th to the nth point 

of the partition, and the stop – Boolean value for breaking iteration. 

1: r ← INITIATE-RADIUS( 0t , nt , n, params) // initiate radius of partition 

2: stop ← FALSE 

3: while stop = FALSE do  

4:     P, T ← EVAL-PARTITION1( 0t , nt , n, r, params) // evaluating partition points 

5:     nd  ← 1P Pn n  // calculate the length of the remaining segment after partitioning 

    // 1d  ← 1 0P P  – for reverse direction  

6:     sg ← sgn( 1n nt t  ) // sign parameters difference for remaining segment 

    // sg ← sgn( 1 0t t ) – for reverse direction 

7:     Δ = sg nd  – r 

    // Δ = sg 1d  – r – for reverse direction 

8:     if |Δ| ≤ e and sg then // stop condition 

9:         stop ← TRUE 

10:     else  

11:         r ← Δ/n + r // new radius of partition 

12:     end if 

13: end while 

14: return P, T // points and parameters of equal partition 

FIG. 7. Equal-chord partition algorithm for one-way move  

Fig. 8 shows the complete procedure for equal-chord partitioning for the two-way move of a circle. 

This algorithm differs from the previous one in that the two calls mentioned above are used in the PARTI-

TION2 procedure, which implements the partition of the curve from the start and end points. This results in 

two sequences of partition points starting from the outside points of the interval. The residual interval is 

between these two sequences' last points of intersection. When the desired partition tolerance is reached, the 

EVAL-PARTITION2 procedure returns the union of the specified sequences. We also note that since the 

calls to the PARTITION2 procedure are independent, they can be done in parallel to reduce the partitioning 

time. In this case, the computational complexity of this algorithm will be O(k⸱n/2). 

Numerical experiments. Let's proceed to consider the experimental part of the work. The tasks of the 

experiments were to study the efficiency of the proposed algorithm and determine the influence of their 

parameters and options on the time of partition. 
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A program code was implemented in the Julia programming language. A double-precision format 

(float64) was used to represent the data. For the numerical solution of the equation, the package for finding 

the roots of nonlinear equations, NonlinearSolve, was used. The solve function, by default, implements a 

combined algorithm for finding roots by selecting a specific numerical method. It is also possible to set the 

method's permissible absolute or relative tolerance. The Threads and Distributed packages implemented the 

threads and processes computing models. Performance was measured using the BenchmarkTools package. 

The results were processed and visualized using MS Excel and the Plots package. All calculations were 

performed on a quad-core Intel Core i5-6300HQ processor laptop. 

EQUAL-PARTITION2(t0, tn, n, n1, e, params) 

In:  Starting point parameter value 0t , finish value of parameter nt , n – number of segments in 

partition, 1n  – number of segments in direction from starting point, absolute tolerance e for 

difference between segments length, params – list of curve’s shape parameters. 

Out: Sequences P’ 
10 1 2P ,P ,P , , Pn , P” 

1 11 2P ,P , , Pn n n  of 1n +1 points for the first partition 

and 1n n   points – for the second partition, corresponding sequence T’ 
10 1 2, , , , nt t t t , T” 

1 1 11 2 3, , , ,n n n nt t t t    of parameter’s values. 

Local: Circle radius r is used for evaluating partition, bd  is the distance between the first partition's 

endpoint and the second partition's first point, and stop – Boolean value is used for breaking 

iteration. 

1: r ← INITIATE-RADIUS( 0t , nt , n, params) // initiate radius of partitions 

2: stop ← FALSE 

3: 
2 1–  1n n n   // number of segments in direction from endpoint 

4: while stop = FALSE do  

5:     P’, T’ ← EVAL-PARTITION2( 0t , 1n , r, TRUE, params) // partitioning from starting point 

6:     P”, T” ← EVAL-PARTITION2( nt , 2n , r, FALSE, params) // partitioning from end point 

7:     bd  ← 
1 11P Pn n   // length of the remaining segment between partitions 

8:     sg ← 
1 11sgn( )n nt t   // sign parameters difference for the remaining segment 

     Δ = sg bd  – r 

9:     if |Δ| ≤ e and sg then // stop condition 

10:         stop ← TRUE 

11:     else  

12:         r ← Δ/n + r // new radius of partition 

13:     end if 

14: end while 

15: return P’P”, T’T” // union of partitions points and parameters 

FIG. 8. Equal-chord partition algorithm for two-way move 

A specific flat parametric curved line was chosen for segmentation – a Bezier curve of the sixth order 

inside a standard partition interval [0,1] when the outside points are the first and last points of its control 

polygon. The Bezier curve is presented in fig. 9. 

The first part of the experiments aimed to study the value k of the number of iterations required for 

equal-chord partition of the selected flat curve with the given tolerance of defining the chord length. For 
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this purpose, the number of segments n was changed, and the following methods for determining the initial 

value of the radius were used – as the minimum value of the uniform parameter`s sampling, as its median, 

and as an average value. At the same time, all three variants of the proposed algorithm were applied. Exper-

iments were carried out with chord inequality error values that depended on the number of segments accord-

ing to the expression: 

0.0001
e

n
 .                 (6) 

 
 

FIG. 9. A flat Bezier curve for the experiments: a – the curve and its control polygon set by the points (5.0; 0.0),  

(–2.55; 10.0), (3.8; 21.2), (8.4; –25.5), (17.8; 19.2), (21.5; 3.4), (13.7; –1.6); b – the shape of the curve 

The segments were divided in half between the sides for the two-way variant. That is, the value of 1n  

was determined as: 

1 div 2n n .                   (7) 

It was found experimentally that the proposed algorithm can be applied for this curve starting with the 

number of partition segments n = 27. At the same time, since the values of k varied in a reasonably wide 

range, the graph was divided into two parts: from 27 to 100 and from 100 to 500 segments. Fig. 10 presents 

the number of iterations obtained depending on the number of partition segments. 

The presented dependences for all algorithm modifications generally stabilize the value of k starting 

from n ≈ 45–50, and after that, large fluctuations no longer occur. Stable values of k < 10 at n ≥ 100 slowly 

decrease with increasing discretization. 

The presence of "flashes" of k values on the graphs with a sufficiently small degree of partition  

(n ≤ 40) can be associated with the complications of achieving the required uniformity at a particular n, 

which are caused by the shape of the curve and depend on the move direction when the algorithm becomes 

sensitive to small changes in the radius. This circumstance is confirmed by the "flashes" occurring at varying 

amplitudes for different directions and values of n. At the same time, for two-way moves, the maximum 

values of k were smaller, which can be explained by the presence of two moving points in the residual 

segment of the partition. 

Regarding the influence of the statistic's choice for the initialization of the partition radius, the experi-

ments' results showed that using the minimum chord value of the uniform by the parameter partition as the 

radius in all cases gave more iterations, which is reasonably expected. The results of the mean and median 

values were very close, but the mean value was more stable. Note that the indicated differences in the results 

were minor compared to n. Therefore, it was decided to conduct further experiments using the average value 

when initializing the radius. 

a b 
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FIG. 10. Iterations depend on the number of partition segments with different statistics for obtaining the initial radius for 

three partitioning methods: a – direct move; b – reverse move; c – two-way move 

The next stage of the experiments was devoted to studying the influence of the specified tolerance of 

determining the chord length on the number of iterations k. At the same time, similarly to the previous 
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experiment, the values of the number of iterations were obtained depending on the number of partition 

segments, but for different values of the tolerance e. The tolerances were represented by a discrete series of 

seven values from 1⸱10-3 to 1⸱10-10 incremented by 10-1. Calculations were carried out for all three algorithm 

variants presented, with a degree of partition from 27 to 1000 segments. To visually explain the obtained 

results and reduce the volume of graphic material, it was decided to do the following – to take the ratio of 

the maximum number of iterations (for e = 1⸱10-10) to the minimum value of k (for e = 1⸱10-3), corresponding 

to the same value of n:  

max

min

k
с

k
 .      (8) 

Figure 11 presents graphs obtained from the results of the experiments. As we can see, all three algo-
rithm variants needed to demonstrate a clear dependence of the ratio on the number of partition segments. 
The mean ratio values were almost the same for all variants. The increase in the number of iterations when 
the tolerance is changed turned out to be insignificant compared with the increase in accuracy (on average 
2.5 times, while the accuracy increased by 10000000 times). For direct and reverse moves, it is possible to 
see the individual “flashes” in all n`s ranges on the graphs. For the two-way variant, "flashes" are present 
only in the initial section from 27 to 160 segments. 

 
а      b 

 

 
с 

FIG. 11. Increasing the number of iterations when changing the partition radius tolerance from 1⸱10-3 to 1⸱10-10: a – direct 
move; b – reverse move; c – two-way move 

With the simultaneous increase in the number of segments and tolerance value, the question of corre-
sponding the tolerance value, the accuracy of the representation of numbers (the selected data type), and the 
tolerance of the intersection equation solve is raised. To study the influence of tolerance, the number of 
iterations was calculated at the e = 1⸱10-11 in the range of n`s values from 100 to 10000, and absolute toler-
ance of the numerical solve method was abstol = 5⸱10-13 and abstol = 1⸱10-16 for the two-way algorithm as 
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the most stable. The obtained results were divided into two parts by the values of n (fig. 12). This experiment 
demonstrated the increasing influence of the solving tolerance with the n's growth – for the less accurate 
method, the amplitude and frequency of k's "flashes" increased. Note that for the method tolerance value of 
abstol = 1⸱10-13, the algorithm gave unstable results and could not perform the partition for some values of 
n. Such results are explained by the fact that the method's accuracy did not allow for achieving the required 
deviation of the chord length when this floating-point format is used. In support of this assumption, changing 
the data type of the partition points from float64 to float128 eliminated the problem. After that, for the 
method tolerance value equal to 1⸱10-13, the algorithm correctly partitioned the curve over the entire range 
of n`s values. 

 
a 

 
b 

FIG. 12. Increasing the number of iterations for the partition radius tolerance e = 1⸱10-11 and different tolerance of the nu-
merical solve method: a – 100 ≤  n  ≤ 1000; b – 1000 ≤  n  ≤ 10000 

At the final stage, the execution time of the partition of the flat Bezier curve was measured at different 
n. These experiments aimed to compare different versions of parallel partitioning and its sequential imple-
mentation for the algorithm using a two-way move. With this approach, the value of k for a particular n 
remains unchanged, but thanks to the possibility of moving from both sides, the partition can be done in 
parallel in time. So, simultaneously with the sequential version, the following were considered: 

1) three threaded versions of the algorithm: 
a) two threads calculate the partition points from the shared memory (array), the reference to which 

is passed to the procedure; 
b) two threads calculate the partition points with their location in two arrays (each stream calculates 

its array); the arrays are transferred by reference; 
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c) two threads calculate the partition points with their location in two arrays (each stream calculates 
its array); the threads return the arrays; 

2) the algorithm's process version with the partition points' location in the shared memory of the two 
processes. 

The measurement of the execution time was carried out with the same values of the radius tolerance  
e = 1⸱10-7 and the accuracy of the solving numerical method. Next, for each n, execution time statistics were 
obtained based on the results of a certain number of tests – the samples parameter. Statistics were minimum, 
maximum, mean, and median time. 

The measurement results were very close for all three threaded versions over the entire range of n 
values, so it was decided to show them as a single version on the graphs. Fig. 13 presents the experiment's 
results, where the median execution time is displayed depending on the number of partition segments. At 
the same time, the range of change of n from 27 to 10000 was divided into three parts. 

 
 

 
 

 
 

FIG. 13. The median of equal chord partition execution time is dependent on the number of segments: a – 27 ≤ n ≤ 100, 

samples = 500; b – 100 ≤ n ≤ 1000, samples = 200; c – 1000 ≤ n ≤ 10000, samples = 100 
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Analyzing the obtained dependencies, we can note that for small n, it is impractical to perform the 

partition using two processes since the costs of organizing inter-process interaction do not allow to ensure 

a result better than the sequential version. Starting with n = 270, these costs are compensated by the parallel 

execution of the partition, and the process version begins to prevail over the serial version. The threaded 

version of the algorithm does not require significant costs for the organization of work, so it was more 

efficient than sequential partitioning over the entire range of changes in n. We also note that with the stabi-

lization of the value of k starting from n = 90, the algorithm on all graphs gives areas of linear growth 

corresponding to a constant k. By decreasing the value of k, there is the formation of "steps" in the decrease 

of execution time when increasing n and the transition to the next section, which is parallel to the previous 

one (fig. 13,b). This confirms the assumption that the execution time grows linearly as n increases. It can 

also be noted that the fragments of linear time growth for the sequential and parallel versions have a different 

inclination angle to the horizon. At the same time, since this angle is larger for the sequential version, the 

difference in execution time between the versions increases as n increases. Therefore, it can be stated that 

when the n increases, the benefit of parallel versions increases, too, striving to reach the theoretical value – 

by a factor of two. 

Discussion. Let's compare the results obtained with those of the closest studies. In [24], an algorithm 

for equal chord partition into segments called the Iso-Level Algorithm (ILA) was presented based on the 

grid approximation of the distance function between two curve`s points. The computational complexity of 

this algorithm is O(n⸱m3) (where m is the number of discretization grid lines for the function approximation). 

According to [24], m > n and, therefore, O(n⸱m3) > O(n4), which is a very slow. In support of this, the 

experiments on breaking the curves presented in this paper were carried out for small values of n - up to 12 

segments. Unlike the algorithm [24], the presented algorithm works well for larger values of n when its 

computational complexity becomes proportional to n. The proposed algorithm depends on the curve's shape 

because the lower limit of n values depends on it. Starting from that limit, the intersection with the curve 

will be unique for all circle positions. The shape of the curve also affects the number of iterations when 

choosing the option of the circle`s move – direct, reverse, or two-way. 

The ECLD algorithm, presented in [26], solves a slightly different task – finding the points on a curve 

for a predefined chord length. However, the idea based on it can be applied to modify the algorithm pre-

sented. This idea is interesting because it does not require finding intersection points and, therefore, does 

not require solving a nonlinear equation. It can also be applied in cases where the intersection between a 

circle and a curve is multivalued. Thus, research on such an algorithm modification can be considered prom-

ising. 

Conclusions. The article examines the problem of a flat curve partition into segments equal in chord 

length. A new approach to solving this problem in the "classical" formulation is proposed based on the 

intersection of a curve with a circle of constant radius. Three versions for partitioning the curve by moving 

the circle are considered. The components of the algorithm are presented – procedures for initiating the 

circle's radius, partitioning the curve by a circle, and the complete procedure for finding an equal-chord 

partition. The experimental part consisted of a study of the dependence of the iterations required to ensure 

the tolerance of the equal-chord partition on the number of segments for different algorithm options, the 

effect of increasing the tolerance on the increase in iterations, and the influence of the numerical solve 

method`s tolerance. Experiments were also conducted to measure the executing time for sequential and 

parallel versions in various segmentation degrees. 

As a result of the research, it was found that the proposed algorithm is quite suitable for the equal chord 

segmentation of flat parametric curves in a wide range of segment values. It was established that with an 

increase in the degree of segmentation, the iterations to achieve the necessary tolerance decreases, reaching 

stabilization values significantly less than the number of segments. This led to the fact that starting from a 

particular value of the partition degree, its execution time increased linearly. The two-way version of the 

algorithm was the most promising for real applications, as it is more stable and flexible. This version is 
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suitable for parallel execution by two processes or threads. The two-threaded version showed the best per-

formance of all the algorithm versions. The disadvantages of the presented algorithm should include, first 

of all, the limitation of the lower limit of segment number because with a small number of them, the radius 

of the partition circle increases, which leads to the presence of several intersection options and the need to 

analyze them. Another disadvantage is that obtaining the points by way of the intersection requires solving 

the nonlinear equation, which depends on the representation of the curve and can be pretty tricky, even for 

numerical methods. 

Summarizing the conducted research and developing the proposed approach to the equal chord seg-

mentation of curves, it is possible to highlight the following promising directions for further study: 

- study of the conditions for the unambiguity of the intersection between a flat curve and a circle in a 

given direction; 

- developing the algorithm for partitioning in conditions of multivalued solution of the intersection 

equation; 

- an extension of the algorithm for the case of spatial parametric curved lines; 

- applying approaches to finding partition points that do not require solving the intersection equation or 

simplifying it; 

- applying the algorithm to curves given by a discrete sequence of points. 

Data availability statement. The data and codes that support this study are available in [28]. 
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Introduction. The problem of discretization of continuous geometric objects is one of the most common 

problems of computational geometry. Many applications in all different fields, such as computer vision, robotics, 

signal processing, curve simplification in computer graphics applications, geographic information systems, and 

digital manufacturing applications, are based on the discretization and segmentation of plane curves, which are 

basic geometric objects. These methods mainly aim to solve the problem of dividing the curve into segments 

with the same characteristics or to minimize a predetermined error. The condition of partitioning the curve into 

points when the lengths of the chords connecting the segments are equal is an additional factor interesting from 

the point of view of practical applications. It allows, for example, to simplify the reproduction of a curve on CNC 

machines thanks to the constancy of the tool feed speed [1] or the reproduction of the movement of an object 

based on a video recording [2].  
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The purpose of the paper is to develop new algorithms for partitioning flat parametric curves under the 

condition of equality of chords (chord length connecting segments of the partition) given the two outside points 

included in the first and last segment and given a number of segments.  

Results. The problem of partitioning a curve in a parametric vector form on the Euclidean plane into seg-

ments equal in chord length having the formulation of [23, 24] was considered. A method of partitioning a flat 

parametric curve into equal-chord segments by crossing a circle of constant radius with the subsequent movement 

of the circle's center to the intersection point is proposed. The problem of the multivalued solution of the inter-

section equation was considered, which complicates the application of this method. This circumstance limits the 

use of circular partitioning by the lower limit of the values of the number of segments. The proposed algorithm 

was presented in pseudocode and described. It consists of the following procedures: the procedure for the initial 

initialization of the radius of a circle based on a partition with a uniform distribution by a parameter, procedures 

for partitioning the curve by a circle for different directions of the circle`s move (direct, reverse, two-way); the 

procedure for obtaining an equal-chord partition with a specified tolerance of determining the chord length. For 

the real curve`s example, experiments were conducted on its equipartition by this algorithm, implemented in the 

Julia programming language. It was established that with an increase in the degree of discretization of the value 

of the curve, the number of iterations required to achieve the specified accuracy stabilizes. This leads to a linear 

dependence of the partition execution time with an increase in the number of segments. It was found that when 

the accuracy of the partition is increased, the number of iterations increases slightly compared to the increase in 

accuracy. 

Conclusions. As a result of the research, it was found that the proposed algorithm is quite suitable for the 

equal chord segmentation of flat parametric curves in a wide range of segment values. The two-way version of 

the algorithm was the most promising for real applications, as it is more stable and flexible. This version is 

suitable for parallel execution by two processes or threads. The two-threaded version showed the best perfor-

mance of all the algorithm versions. The disadvantages of the presented algorithm should include, first of all, the 

limitation of the lower limit of number of segments because with a small number of them, the radius of the 

partition circle increases, which leads to the presence of several intersection options and the need to analyze these 

options. Another disadvantage is that obtaining the points by way of the intersection requires solving the nonlin-

ear equation, which depends on the representation of the curve and can be pretty tricky, even for numerical 

methods. 

Keywords: pseudocode, iteration, computational complexity, segmentation, chord, intersection equation. 
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Вступ. Проблема дискретизації неперервних геометричних об’єктів – це одна з найпоширеніших 

проблем обчислювальної геометрії. Ця проблема має велику кількість застосувань в усіх різних сферах, 

таких як комп’ютерний зір, робототехніка, обробка сигналів, спрощення кривих у застосунках комп’юте-

рної графіки, геоінформаційних системах та застосунках для цифрового виробництва, засновані на дис-

кретизації та сегментації плоских кривих, які є базовими геометричними об’єктами. Основна мета  мето-

дів дискретизації полягає у тому, щоб вирішити задачу розбиття кривої на сегменти з однаковими хара-

ктеристиками або мінімізувати заздалегідь визначену помилку. Умова розбиття кривої точками при рів-

ності довжин хорд стягуючих сегменти є додатковим фактором цікавим з точки зору практичних засто-

сувань. Вона дозволяє, наприклад, спростити відтворення кривої на станках із ЧПУ завдяки сталості шви-

дкості подачі інструмента [1], або відтворення руху об’єкта за відеозаписом [2]. 

Мета роботи. Розроблення нових алгоритмів розбиття плоских параметричних кривих за умови рі-

вності ланок (довжин хорд стягуючих сегменти розбиття) при поданих двох крайніх точках, що входять 

до першого та останнього сегменту, та заданої кількості сегментів.  
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Результати. Розглядалась задача розбиття кривої, заданої у параметричній векторній формі на евк-

лідовій площині, на рівні за довжиною хорди сегменти у «класичному» формулюванні [23, 24]. Запропо-

новано метод розбиття плоскої параметричної кривої на рівні за хордою сегменти перетином кола ста-

лого радіусу з наступним переміщенням центру кола у точку перетину. Було розглянуто проблему бага-

тозначності розв’язку рівняння перетину, що ускладнює застосування цього методу. Ця обставина обме-

жує застосування розбиття колом нижньою границею значень кількості сегментів. Було представлено у 

псевдокоді і описано запропонований алгоритм, а саме: процедуру первісної ініціалізації радіусу кола на 

основі розбиття з рівномірним розподілом за параметром; процедури розбиття кривої колом для різних 

напрямів переміщення кола (прямий, зворотний, двосторонній); процедуру отримання рівноланкового 

розбиття із заданою точністю визначення довжини хорди. На прикладі реальної кривої лінії проведено 

експерименти із її розбиття алгоритмом, реалізованим на мові програмування Julia. Встановлено, що із 

збільшенням ступеня дискретизації кривої значення кількості ітерацій, необхідних для досягнення зада-

ної точності, стабілізується. Це призводить до лінійної залежності часу виконання розбиття зі збільшен-

ням кількості сегментів. Виявлено, що при підвищення точності розбиття відбувається незначне у порів-

няння із зростанням точності збільшення показника кількості ітерацій. 

Висновки. У результаті проведених досліджень встановлено, що запропонований алгоритм цілком 

придатний для сегментації плоских параметричних кривих за умови рівності довжин хорд у широкому 

діапазоні значень кількості сегментів. Для реальних застосувань найбільш перспективною виявився дво-

сторонній варіант алгоритму, як більш стабільний та гнучкий. Цей варіантf алгоритму дозволяє викону-

вати розбиття паралельно двома процесами або потоками. Версія з двома потоками продемонструвала 

найкращі показники часу виконання серед всіх версій алгоритму. До недоліків представленого алгоритму 

слід віднести, насамперед, обмеження нижньої границі значень кількості сегментів, адже при їх невеликої 

кількості збільшується радіус кола розбиття, що призводить до наявності декількох варіантів перетину 

та необхідності аналізу цих варіантів. Недоліком також є те, що для отримання точок розбиття на основі 

перетину з колом необхідно розв’язувати нелінійне рівняння, яке залежить від представлення кривої, і 

може бути досить складним, навіть, для чисельних методів. 

Ключові слова: псевдокод, ітерація, обчислювальна складність, сегментація, хорда, рівняння  

перетину. 


