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The problem of equal-chord partitioning of a
plane curve is applied from domains such as com-
puter vision, robotics, signal processing, geo-
graphic information systems, and digital manu-
facturing. The proposed partitioning method is
based on the intersection between a curve and a
circle of constant radius centered on this curve,
followed by moving the center to the intersection
point. The designed algorithm consists of the fol-
lowing procedures: the procedure for the initial
initialization of the radius of a circle based on a
partition with a uniform distribution by a param-
eter, procedures for partitioning the curve by a
circle for different directions of the circle’s move
(direct, reverse, two-way); the procedure for ob-
taining an equal-chord partition with a specified
tolerance of determining the chord length. For
the real curve's example, experiments were con-
ducted on it equipartition by this algorithm, im-
plemented in the Julia programming language,
known for its high performance and ease of use in
scientific computing.
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Introduction. The problem of discretization of continuous
geometric objects, acommon issue in computational geom-
etry, has broad interdisciplinary applications. From com-
puter vision to robotics, signal processing, curve simplifi-
cation in computer graphics applications, geographic infor-
mation systems, and digital manufacturing applications,
the need for the discretization and segmentation of plane
curves is evident. These methods primarily aim to solve the
problem of dividing the curve into 'homogeneous' segments
with the same characteristics, such as equal length or cur-
vature, or to minimize a predetermined error. This interdis-
ciplinary approach underscores the broad applicability of
the research and its potential impact across various fields.

The condition of partitioning the curve into points when
the lengths of the chords connecting the segments are equal
is an additional factor of practical interest. It allows, for ex-
ample, to simplify the reproduction of a curve on CNC ma-
chines thanks to the constancy of the tool feed speed [1] or
the reproduction of the movement of an object based on a
video recording [2]. Therefore, the study of equal-chord
segmentation methods, particularly their potential imple-
mentation in computer design and digital manufacturing
systems, geoinformation systems, and computer vision sys-
tems, is of significant importance.

This work aims to develop new algorithms for partition-
ing flat parametric curves under the condition of equality
of chords (chord length connecting segments of the parti-
tion) given the two outside points included in the first and
last segment and given a number of segments. The re-
search's novelty lies in applying an iterative procedure
within the algorithm for partitioning a planar curve using a
moving circle. The circle's radius is initialized based on a
parameter-uniform curve segmentation, followed by radius
adjustment to correct for uneven partitioning errors. With
an increase in the number of segments, the proposed algo-
rithms demonstrate linear complexity, which is much better
than known solutions.
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Related work. Numerous works are devoted to partitioning curves into segments, highlighting various
methods, algorithms, and criteria for partitioning according to the specifics of the solved tasks. Among the
significant works, it is possible to distinguish two sets: 1) works that examine curves already represented by
a discrete sequence of points and 2) works that investigate the discretization of continuous curved lines
represented in mathematical expressions.

Algorithms of adaptive partitioning of curves, represented by an ordered discrete set of points, make it
possible to cut the original series of points by polyline segments with smaller nodes. Works [3-14] are
devoted to this topic.

The algorithm presented in [3-5] is based on calculating the divergence, which is recognized by the
maximum distance between the original curve and the broken one. At the initial stage, this method finds the
point that is farthest from the segment connecting the initial and final points of the curve, compares the
divergence with the specified error — ¢, and in the case when this divergence is greater than ¢, recursively
calls itself on the sets of points from initial to the given and from the given to the final and so forth.

Algorithm [6] considers the partitioning condition in the form of the extremum of the ratio of the area
of the curve bounded by the arc and the chord to the length of the chord.

In [7], an approach to choosing the number of points k located on the segmentation site was proposed.
To find the correct value of k, they determined the best straight line for each k-point arc of the curve and
calculated the root mean square error corresponding to that fit. This approach was developed in the work
[8]. In [9], the method of polygonal approximation of a discrete curve based on the minimization of the
integral root mean square error of approximation is considered.

In the study [10], an iterative approach was used to select the points of a discrete curve based on deter-
mining the admissible sector of the angles of a polyline segment starting at the current point of a given
discrete set. In work [11], this algorithm was improved by optimizing it using the dynamic programming
method.

An algorithm to determine dominant points by calculating the difference between the squares of the
lengths of the curve's arc and the chord was considered in [12]. The article [13] proposed a heuristic ap-
proach to selecting initial dominant points with the subsequent insertion of additional dominants, provided
that the required approximation accuracy was ensured.

In [14], an algorithm is considered that selects a subset of k from n points so that the difference in arc
length between the approximation and the original curve is minimized. Given a limit of arc length diver-
gence, the algorithm selects a subset of the minimum number of points necessary to bring the curve closer
to this limit. No smaller subset of the starting points can reach this limit.

The works [15-22] are devoted to the algorithms for discretizing curved lines presented in a parametric
or vector form.

In [15], the adaptive sampling algorithm of parametric curve approximation nodes is considered. At the
same time, the following procedure is performed:

« The initial uniform selection of discretization nodes obtains the original ordered set of curve points.

» The output set is divided into intervals.

» For each interval, internal nodes are checked according to the chosen strategy for determining local
flattening.

» Depending on the result of the check, the interval is either divided into two parts with a further
recursive flattening check, or the extreme points of the interval are stored in a separate list of nodes that
meet the flattening criterion.

The following criteria for checking local flattening are applied [15]:

+ The area of the triangle formed by the two outside points and one inner point from the interval is
relatively small.
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» The angle formed by the outside left — P, inner — R, and outside right — Q points of the interval are
obtuse and close to 180°,

» The distance from the inner point R to the chord PQ, which contracts the outside points, is small.

+  The expression |P—Q|+|R—Q)| is approximately equal to [P - Q.

« Tangents to the curve at points P, R, and Q are approximately parallel.

The uniform sampling of the points from the parametric curve by the length of the arc is a fairly common
problem from the point of view of practical applications. Such discretization in the case of polynomial
curves requires numerical integration [16-18], which complicates implementation on specific devices. In
[19], a method with an initial random sampling of curve points was considered to simplify the implementa-
tion.

The selection of curve points (in particular, NURBS) based on their reparameterization depending on
curvature or mixed parameterization depending on arc length and curvature with equal weights was consid-
ered in [20]. A similar approach to the selection of curve points is given in [21], where the arc length and
the bending energy of the curve (which depends on the square of the curvature) were taken as a mixed
criterion. In [22], an asymptotically optimal approach is considered, where the number of sampling points
is chosen depending on the distribution function similar to the curvature and is minimal for a given error of
polygonal approximation of the curve. The mentioned methods [20—22] require numerical integration and
solution of a system of nonlinear equations.

Papers [23-26] have focused on the problem of equal chord curve partitioning. The work [23] is theo-
retical and represents proof of the existence of an equipartition. The study [24] is more voluminous. In
addition to theoretical material, an algorithm based on the piecewise linear approximation of the distance
functions of two points of the curve was proposed. The work also analyzed the inequality errors of the
partition's chords and the algorithm's computational complexity and presented the experimental results of
the equipartitions. In the work [25] of the same authors, the abovementioned approach to partitioning under
equality of distances was applied to polygonal approximation of curves in spaces of any dimensions under
equality of approximation errors. In work [26], which concerns coating products of complex shapes on CNC
machines by surfacing, an interpolation method called ECLD (equi-chord length deposition) was used. The
ECLD algorithm uses the sequential determination of the curve parameter corresponding to the chord whose
length differs from the specified one by a value that is less than or equal to the permissible error. In this
case, partitioning with a fixed step and binary search is used to obtain the parameter's value. The example of
the Rhinoceros 3D system of Robert McNeel & Associates should be given regarding the implementation of
equal-chord partitioning in computer modeling and design systems. This system uses a curve-splitting tool — the
divide command, which has options for equal chord lengths (EqualChordLength) [27].

The problem setting. Partitioning a parametric curve on the Euclidean plane into segments equal in
chord length in the "classical” formulation [23, 24] was considered.

Let the equation of the curve be given in vector form

p=p(). @

It is necessary to determine the intermediate values t, <t; <t, < ... <t, 4 <t atthe given interval of

the curve parameter change t [ty,t,] such that when substituting them into equation (1), we get the sequence
of points — P {Py, P, Py, ..., Py, Py}

P =p(), (i=01...,n), 2
for which the condition of segment equality is satisfied:
dl:dzz . :dn, (3)

where is the Euclidean distance from point P, to point P, , etc.
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Thus, a flat curve on the interval [ty, t,] is divided into n equal chord length segments. The problem of

the existence of such a partition was proved in [23, 24].

The proposed approach to solving the problem is based on the simple idea of dividing a flat curve by
the imaginary movement of a constant radius circle along this curve. The circle successively intersects the
curve from the side of the movement direction with the subsequent transfer of the center to the obtained
point of intersection. If the center of the circle's initial position is placed at the start or end point of the curve,
then to divide it into n parts, it is necessary to make n—1 such intersections.

To obtain an equal partition of the curve in this way, the following problems have to be solved:

1) determination of the circle radius so that it is equal to the length of the chord under condition (3);

2) point selection in cases where there is more than one point of a curve and a circle intersection in the
corresponding direction.

The radius of the moving circle for a specific plane curve depends on the number of partitions. However,
the second problem depends on the first problem's solution and the direction choice.

Fig. 1 illustrates the dependence of intersection points on the circle's radius. Comparatively small
changes in the radius of the circle can give one (a circle with the intersection point Piil), two (a circle with
the points 5&1 and 5i+21), three (circle with points P L p2 Pifl) and even more points intersection with

i+1 Vi+lo
the curve.
Fig. 2 makes it clear how, depending on the moving direction, the intersections that give the same
common chord of the curve will determine different other points of intersection. So, the circle with the

center at the point P, gives three intersection points in a straight direction (fig. 2,a) Pifl.
3

+11

If you move the

center of the circle to the point P; =P, 7, then the circle of the same radius at the intersection with the curve

in the opposite direction (fig. 2,b) will remain, except for the point Pfll , Which coincides with P;, the points

- o1 2
P}, and P, , which differ from the points P}, and P

FIG. 1. Dependence of intersection points for the curve and the circle on the radius
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FIG. 2. Dependence of the intersection points location for the curve and the splitting circle on the moving direction

Since the presence of several intersection points significantly complicated the algorithm, within the
framework of this study, the task was limited to solving the problem of determining the radius, assuming
that there is only one point of intersection in the moving direction. In practice, this assumption is achieved
starting from some value of n for a given interval of a specific curve. Therefore, the cases with existing
multivalued intersection points are limited by n, which depends on the curve's properties and the segmenta-
tion interval's choice.

The proposed algorithm. The following approach is proposed for calculating the radius of a circle:

— In the first stage, the circle's radius is determined, ensuring segmentation with the intersection
points' location on the curve inside the given interval. At the same time, we will have n — 1 segments equal
in chord length and a remainder, the chord length of which needs to be calculated,;

— In the second stage, the value of the division radius is adjusted based on the difference between
the received chord length of the remainder and the current radius of the circle. The splitting process is re-
peated with the new adjusted radius, and so on, until the difference between the chord of the remaining
segment and the splitting radius is reduced to an acceptable error.

The algorithm presented in fig. 3 was used to implement the initialization procedure for the partition
radius. This algorithm is based on the uniform parameter’s discretization for the given curve’s interval and
calculating the lengths of all chords. The initial value of the circle's radius is taken as the statistical charac-
teristic of the obtained chord sequence. Such a characteristic can be this sequence's minimum, average, or
median value. The computational complexity of the initialization algorithm is O (n).

After obtaining the initial value of the radius, it is necessary to split the curve directly by moving the
circle. Since we already have two outside points of the curve, between which n-1 segmentation points need
to be defined, we can move the circle in three ways:

—  The partition begins from the circle's movement to the outside point corresponding to the value of
the parameter t, —fig. 4,a. After making n—1 steps, we will get a partition and the remaining last segment

between the points corresponding parameter's values t, ; and t,. This version of the algorithm will be
conventionally called the direct move;

—  The partition begins from the circle's movement to the outside point corresponding to the param-
eter t, value- fig. 4,b. After making the n—1 steps, we will get a partition with the remaining first segment
(between the points corresponding to the parameter’s values t, and t;). This version of the algorithm will
be conventionally called the reverse move;
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The partition starts from outside points (t, and t,), and two circles move toward each other —

fig. 4,c. Let the circle move from the point corresponding to the parameter's value to and make the n; inter-
section steps. Then, the circle moving from the opposite direction must make n—n, —1 intersection steps.
The remaining segment will be located between the points corresponding to the parameter values t, and

t,,+1- This version of the algorithm will be conventionally called the two-way move.

INITIATE-RADIUS(to, t,, n, params)

In:

Out:

Local:

N Ok N R

©

Starting point parameter value t,, finish value of parameter t,, n — number of segments in

partition, params — list of curve’s shape parameters.
Initial circle radius r for evaluating partition.

Sequence P <P0,P1,P2,..., Pn> of n+1 points for uniform parameter step partition, sequence
D <d1, d,,..., dn> of n segment length for uniform parameter’s step partition.

uniform —step < (t,, —t, )/ n // calculate uniform step
for i< 0...n do
R < p(ty +uniform—step-i, params) // calculate curve’s point for partition

end for
fori«< 1...ndo

d; <[P —Pi_y|| // calculate the length of i-th segment
end for

r<d // meanof D
return r

FIG. 3. Algorithm for initialization of the circle’s radius

c

FIG. 4. Three methods of partitioning a curve by moving a circle: a — direct move; b — reverse move; ¢ — two-way move
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Fig. 5 presents an algorithm for direct and inverse partitioning of a flat curve by moving a circle. This
algorithm sequentially calculates the coordinates of the intersection points based on the FIND-ROOT pro-
cedure. This procedure implements finding the intersection point between a circle and a curve, which de-
pends on the curve's parametric form and the equation's solving method. The intersection equation in vector
form has the following form:

lp®) —pal=r. (4)
where p; is the current position of the circle's center, and r is the partition radius. From this equation, the
FIND-ROOT procedure must determine its root, which is between the values of t; and t,, for the direct move

(ty and ty; — for reverse). The obtained parameter's value is then used to calculate the intersection point

coordinates according to the parametric equations and where the circle's center is moved on the next loop
iteration. Since obtaining the intersection between a circle and a curve takes a constant amount of time, the

computational complexity of this algorithm depends on the number of partitions, which is O(n).

PARTITIONA1(to, tn, n, r, params)
In: Starting point parameter value to, second value of parameter t, for solver’s initial conditions

interval — [to,tn], n — number of segments in partition, circle radius r for evaluating partition,

params — list of curve’s shape parameters.
Out: Sequence P <P0,P1, Py, Pn> of n+1 partition points and corresponding sequence T
<to,tl,t2,..., tn> of parameter’s values.
Local: start — index of starting point, stop — endpoint index, step is 1 for direction from t, to t, and
—1 — otherwise.
if ty <t, then // check direction to initiate parameters
start < 0
stop«—n-2
step « 1
else
start < n
stop «— 2
step «— -1
end if
0: Py = p(t,, params) // evaluate outside points
11: P, = p(t,, params)
12: for i « start...stop do
13: ti siep < FIND-ROOT(P,, t;, params, r) // solve equation of an intersection circle and curve

BeoNogkwn B

14: Piistep < P(lisstep » Params) // evaluate inside points

15: end for
16: returnP, T

FIG. 5. Pseudocode for the algorithm of partitioning a flat curve by direct or reverse move

Fig. 6 presents the algorithm for the two-way partition of a flat curve with a circle. Unlike the previous
algorithm, this algorithm is adapted to receive only the partition's starting point and direction. To implement
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a complete partition iteration, the algorithm must be called twice with the input parameter values corre-
sponding to the left and right outside points and the number of segments n; and n—n, — 1. The order of
the calls does not matter because they are independent.

PARTITION2(ts, n, r, direction, params)
In: First point parameter value tg, n — number of segments in partition, circle radius r for evaluat-

ing partition, direction is Boolean value (TRUE for direction from start point, FALSE — from
endpoint), params — list of curve’s shape parameters.

Out: Sequence P (Py,P,P,,...,P,) of n+1 partition points and corresponding sequence T

<t0,t1,t2,..., tn> of parameter’s values.

Local: start - index of starting point, stop — endpoint index, step is 1 for direction from t, to t, and
-1 — otherwise.

1: if direction = TRUE then // check direction to initiate parameters

2: start — 0

3: stope—n-1

4. step «— 1

S: Po = p(ty, params) // evaluate outside point

6: else

7 start < n

8: stop « 1

9: step «— -1

10: P, = p(t,, params) // evaluate outside point

11: end if

12: for i < start...stop do

13: ti.sep < FIND-ROOT(P;, t;, params, r) // solve equation of an intersection circle and curve

14: Piistep < P(tisstep, Params) // evaluate inside points

15: end for

16: returnP, T

FIG. 6. Pseudocode for the algorithm of partitioning a flat curve by a two-way move

The complete procedure for equal chord partitioning a flat curve by a circle for direct or reverse move
is presented in fig. 7. It is based on the previously described algorithms of the radius initial initialization
(INITIATE-RADIUS) and partitioning the curve by a circle (PARTITION1). After assigning an initial ra-
dius value, this algorithm successively calculates the points of the curve partition by the circle in a while
loop. After each partition, the remaining segment chord length is defined, and then the difference between
it and the circle's radius is obtained.

Based on comparing the received error value with the permissible value of the partition unevenness, the
algorithm decides to continue partitioning with the adjusted radius value or stop iterating with the received
points of equal-chord partition. To change the radius, a uniform distribution of error between all segments
was used:

r=2r, (5)

n
where A is the difference (error) between the chord of the residual segment and the radius of the partition
circle and T is the "old" (previous) value of the radius; note that formula (5) gives the same result as
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averaging the chord length over all segments. The computational complexity of the proposed algorithm
depends on the number of partition points and is O(k-n). Here, k denotes the number of iterations required
to achieve the given tolerance (evenness of partitioning).

EQUAL-PARTITIONL(to, t, n, €, params)

In: Starting point parameter value t,, finish value of parameter t,, n — number of segments in

partition, absolute tolerance e for difference between segments length, params — list of
curve’s shape parameters.

Out: sequence P (Py,Py,P,,..., P )of n+1 partition points and corresponding sequence T

<to,tl,t2,..., tn> of parameter’s values.

Local:  Circle the radius r for evaluating the partition, the d,, — distance from (n-1)th to the nth point
of the partition, and the stop — Boolean value for breaking iteration.

1 r « INITIATE-RADIUS(t,, t,, n, params) // initiate radius of partition
2: stop < FALSE
3: while stop = FALSE do
4 P, T« EVAL-PARTITION1(t,, t,, n, r, params) // evaluating partition points
5. d, < [P, =Py // calculate the length of the remaining segment after partitioning
/I d; — |P,—Py|| — for reverse direction
6: sg « sgn(t, —t,_1) // sign parameters difference for remaining segment
Il sg « sgn(t; —t,) — for reverse direction
7 A=sgd,-r
Il 4 =sg d; —r—for reverse direction
8: if |4] < e and sg then // stop condition
9: stop < TRUE
10: else
11: r — A/n + r // new radius of partition
12: end if
13: end while
14: return P, T // points and parameters of equal partition

FIG. 7. Equal-chord partition algorithm for one-way move

Fig. 8 shows the complete procedure for equal-chord partitioning for the two-way move of a circle.
This algorithm differs from the previous one in that the two calls mentioned above are used in the PARTI-
TION2 procedure, which implements the partition of the curve from the start and end points. This results in
two sequences of partition points starting from the outside points of the interval. The residual interval is
between these two sequences' last points of intersection. When the desired partition tolerance is reached, the
EVAL-PARTITION2 procedure returns the union of the specified sequences. We also note that since the
calls to the PARTITION2 procedure are independent, they can be done in parallel to reduce the partitioning
time. In this case, the computational complexity of this algorithm will be O(k-n/2).

Numerical experiments. Let's proceed to consider the experimental part of the work. The tasks of the
experiments were to study the efficiency of the proposed algorithm and determine the influence of their
parameters and options on the time of partition.
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A program code was implemented in the Julia programming language. A double-precision format
(float64) was used to represent the data. For the numerical solution of the equation, the package for finding
the roots of nonlinear equations, NonlinearSolve, was used. The solve function, by default, implements a
combined algorithm for finding roots by selecting a specific numerical method. It is also possible to set the
method's permissible absolute or relative tolerance. The Threads and Distributed packages implemented the
threads and processes computing models. Performance was measured using the BenchmarkTools package.
The results were processed and visualized using MS Excel and the Plots package. All calculations were
performed on a quad-core Intel Core i5-6300HQ processor laptop.

EQUAL-PARTITION2(ty, t,, N, N1, €, params)

In: Starting point parameter value t,, finish value of parameter t,, n — number of segments in
partition, n; — number of segments in direction from starting point, absolute tolerance e for
difference between segments length, params — list of curve’s shape parameters.

Out:  sequences P’ <P0,P1,P2,..., Pn1>, P” <Pn1+1,Pnl+2,..., Pn> of n, +1 points for the first partition

and n—n; points — for the second partition, corresponding sequence 7" <t0,t1,t2,..., tnl> , T

<tnl wltyi2tyizo Ty > of parameter’s values.

Local:  Circle radius r is used for evaluating partition, d, is the distance between the first partition's
endpoint and the second partition’s first point, and stop — Boolean value is used for breaking

iteration.
1 r — INITIATE-RADIUS(t,, t,, n, params) // initiate radius of partitions
2: stop «<— FALSE
3: n, <~ n—m — 1 // number of segments in direction from endpoint
4: while stop = FALSE do
o P’, T’ — EVAL-PARTITION2(t,, n;, r, TRUE, params) // partitioning from starting point
6: P”, T” «— EVAL-PARTITION2(t,, n,, r, FALSE, params) // partitioning from end point
£ dy « HPnl+1 - Pan /' length of the remaining segment between partitions
8: Sg «— sgn(tnl+l —tnl) /1 sign parameters difference for the remaining segment

A=sgd, —r

9: if |A| < e and sg then // stop condition
10: stop <~ TRUE
11: else
12: r — A/n + r// new radius of partition
13: end if
14: end while
15: return P’UP”, T’ U T” //union of partitions points and parameters

FIG. 8. Equal-chord partition algorithm for two-way move

A specific flat parametric curved line was chosen for segmentation — a Bezier curve of the sixth order
inside a standard partition interval [0,1] when the outside points are the first and last points of its control
polygon. The Bezier curve is presented in fig. 9.

The first part of the experiments aimed to study the value k of the number of iterations required for
equal-chord partition of the selected flat curve with the given tolerance of defining the chord length. For
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this purpose, the number of segments n was changed, and the following methods for determining the initial
value of the radius were used — as the minimum value of the uniform parameter’s sampling, as its median,
and as an average value. At the same time, all three variants of the proposed algorithm were applied. Exper-
iments were carried out with chord inequality error values that depended on the number of segments accord-
ing to the expression:

o 0.0001 . (6)

n

20 - °
75

10 | Q

| U~

25

0.0 |

L L L L L L | | | | I
-20 -10 o] 10 20 30 40 3 6 9 12 15
X

a b

FIG. 9. A flat Bezier curve for the experiments: a — the curve and its control polygon set by the points (5.0; 0.0),
(-2.55; 10.0), (3.8; 21.2), (8.4; —25.5), (17.8; 19.2), (21.5; 3.4), (13.7; —1.6); b — the shape of the curve

The segments were divided in half between the sides for the two-way variant. That is, the value of n;

was determined as:
n=ndiv2. ()

It was found experimentally that the proposed algorithm can be applied for this curve starting with the
number of partition segments n = 27. At the same time, since the values of k varied in a reasonably wide
range, the graph was divided into two parts: from 27 to 100 and from 100 to 500 segments. Fig. 10 presents
the number of iterations obtained depending on the number of partition segments.

The presented dependences for all algorithm modifications generally stabilize the value of k starting
from n ~ 45-50, and after that, large fluctuations no longer occur. Stable values of k < 10 at n > 100 slowly
decrease with increasing discretization.

The presence of "flashes" of k values on the graphs with a sufficiently small degree of partition
(n < 40) can be associated with the complications of achieving the required uniformity at a particular n,
which are caused by the shape of the curve and depend on the move direction when the algorithm becomes
sensitive to small changes in the radius. This circumstance is confirmed by the "flashes™ occurring at varying
amplitudes for different directions and values of n. At the same time, for two-way moves, the maximum
values of k were smaller, which can be explained by the presence of two moving points in the residual
segment of the partition.

Regarding the influence of the statistic's choice for the initialization of the partition radius, the experi-
ments' results showed that using the minimum chord value of the uniform by the parameter partition as the
radius in all cases gave more iterations, which is reasonably expected. The results of the mean and median
values were very close, but the mean value was more stable. Note that the indicated differences in the results
were minor compared to n. Therefore, it was decided to conduct further experiments using the average value
when initializing the radius.
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FIG. 10. Iterations depend on the number of partition segments with different statistics for obtaining the initial radius for
three partitioning methods: a — direct move; b — reverse move; ¢ — two-way move

The next stage of the experiments was devoted to studying the influence of the specified tolerance of
determining the chord length on the number of iterations k. At the same time, similarly to the previous

ISSN 2707-4501. Cybernetics and Computer Technologies. 2025, No.1 23



0. FROLOV

experiment, the values of the number of iterations were obtained depending on the number of partition
segments, but for different values of the tolerance e. The tolerances were represented by a discrete series of
seven values from 1-10 to 1-10"% incremented by 10, Calculations were carried out for all three algorithm
variants presented, with a degree of partition from 27 to 1000 segments. To visually explain the obtained
results and reduce the volume of graphic material, it was decided to do the following — to take the ratio of
the maximum number of iterations (for e = 1-10°) to the minimum value of k (for e = 1-103), corresponding
to the same value of n:

¢ = Knax 8)

kmin

Figure 11 presents graphs obtained from the results of the experiments. As we can see, all three algo-
rithm variants needed to demonstrate a clear dependence of the ratio on the number of partition segments.
The mean ratio values were almost the same for all variants. The increase in the number of iterations when
the tolerance is changed turned out to be insignificant compared with the increase in accuracy (on average
2.5 times, while the accuracy increased by 10000000 times). For direct and reverse moves, it is possible to
see the individual “flashes” in all n's ranges on the graphs. For the two-way variant, "flashes" are present
only in the initial section from 27 to 160 segments.
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FIG. 11. Increasing the number of iterations when changing the partition radius tolerance from 1-10% to 1-10-1% a — direct
move; b — reverse move; ¢ — two-way move

With the simultaneous increase in the number of segments and tolerance value, the question of corre-
sponding the tolerance value, the accuracy of the representation of numbers (the selected data type), and the
tolerance of the intersection equation solve is raised. To study the influence of tolerance, the number of
iterations was calculated at the e = 1-10* in the range of n’s values from 100 to 10000, and absolute toler-
ance of the numerical solve method was abstol = 5-10*% and abstol = 1-10%¢ for the two-way algorithm as
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the most stable. The obtained results were divided into two parts by the values of n (fig. 12). This experiment
demonstrated the increasing influence of the solving tolerance with the n's growth — for the less accurate
method, the amplitude and frequency of k's "flashes" increased. Note that for the method tolerance value of
abstol = 1-10°%3, the algorithm gave unstable results and could not perform the partition for some values of
n. Such results are explained by the fact that the method's accuracy did not allow for achieving the required
deviation of the chord length when this floating-point format is used. In support of this assumption, changing
the data type of the partition points from float64 to float128 eliminated the problem. After that, for the
method tolerance value equal to 1-107%3, the algorithm correctly partitioned the curve over the entire range
of n’s values.
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FIG. 12. Increasing the number of iterations for the partition radius tolerance e = 1-10! and different tolerance of the nu-
merical solve method: a—100< n <1000; b —1000 < n <10000

At the final stage, the execution time of the partition of the flat Bezier curve was measured at different
n. These experiments aimed to compare different versions of parallel partitioning and its sequential imple-
mentation for the algorithm using a two-way move. With this approach, the value of k for a particular n
remains unchanged, but thanks to the possibility of moving from both sides, the partition can be done in
parallel in time. So, simultaneously with the sequential version, the following were considered:
1) three threaded versions of the algorithm:
a) two threads calculate the partition points from the shared memory (array), the reference to which
is passed to the procedure;
b) two threads calculate the partition points with their location in two arrays (each stream calculates
its array); the arrays are transferred by reference;
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¢) two threads calculate the partition points with their location in two arrays (each stream calculates
its array); the threads return the arrays;

2) the algorithm's process version with the partition points' location in the shared memory of the two
processes.

The measurement of the execution time was carried out with the same values of the radius tolerance
e = 1107 and the accuracy of the solving numerical method. Next, for each n, execution time statistics were
obtained based on the results of a certain number of tests — the samples parameter. Statistics were minimum,
maximum, mean, and median time.

The measurement results were very close for all three threaded versions over the entire range of n
values, so it was decided to show them as a single version on the graphs. Fig. 13 presents the experiment's
results, where the median execution time is displayed depending on the number of partition segments. At
the same time, the range of change of n from 27 to 10000 was divided into three parts.
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FIG. 13. The median of equal chord partition execution time is dependent on the number of segments: a — 27 <n < 100,
samples = 500; b — 100 < n < 1000, samples = 200; ¢ — 1000 < n < 10000, samples = 100

26 ISSN 2707-4501. Kibepnemuxa ma komn'tomepri mexronozii. 2025, Ne 1



EQUIPARTITION ALGORITHM FOR A FLAT PARAMETRIC CURVE BASED ON ...

Analyzing the obtained dependencies, we can note that for small n, it is impractical to perform the
partition using two processes since the costs of organizing inter-process interaction do not allow to ensure
a result better than the sequential version. Starting with n = 270, these costs are compensated by the parallel
execution of the partition, and the process version begins to prevail over the serial version. The threaded
version of the algorithm does not require significant costs for the organization of work, so it was more
efficient than sequential partitioning over the entire range of changes in n. We also note that with the stabi-
lization of the value of k starting from n = 90, the algorithm on all graphs gives areas of linear growth
corresponding to a constant k. By decreasing the value of k, there is the formation of "steps" in the decrease
of execution time when increasing n and the transition to the next section, which is parallel to the previous
one (fig. 13,b). This confirms the assumption that the execution time grows linearly as n increases. It can
also be noted that the fragments of linear time growth for the sequential and parallel versions have a different
inclination angle to the horizon. At the same time, since this angle is larger for the sequential version, the
difference in execution time between the versions increases as n increases. Therefore, it can be stated that
when the n increases, the benefit of parallel versions increases, too, striving to reach the theoretical value —
by a factor of two.

Discussion. Let's compare the results obtained with those of the closest studies. In [24], an algorithm
for equal chord partition into segments called the Iso-Level Algorithm (ILA) was presented based on the
grid approximation of the distance function between two curve's points. The computational complexity of
this algorithm is O(n-m?) (where m is the number of discretization grid lines for the function approximation).
According to [24], m > n and, therefore, O(n-m®) > O(n*), which is a very slow. In support of this, the
experiments on breaking the curves presented in this paper were carried out for small values of n - up to 12
segments. Unlike the algorithm [24], the presented algorithm works well for larger values of n when its
computational complexity becomes proportional to n. The proposed algorithm depends on the curve's shape
because the lower limit of n values depends on it. Starting from that limit, the intersection with the curve
will be unique for all circle positions. The shape of the curve also affects the number of iterations when
choosing the option of the circle’s move — direct, reverse, or two-way.

The ECLD algorithm, presented in [26], solves a slightly different task — finding the points on a curve
for a predefined chord length. However, the idea based on it can be applied to modify the algorithm pre-
sented. This idea is interesting because it does not require finding intersection points and, therefore, does
not require solving a nonlinear equation. It can also be applied in cases where the intersection between a
circle and a curve is multivalued. Thus, research on such an algorithm modification can be considered prom-
ising.

Conclusions. The article examines the problem of a flat curve partition into segments equal in chord
length. A new approach to solving this problem in the “classical” formulation is proposed based on the
intersection of a curve with a circle of constant radius. Three versions for partitioning the curve by moving
the circle are considered. The components of the algorithm are presented — procedures for initiating the
circle's radius, partitioning the curve by a circle, and the complete procedure for finding an equal-chord
partition. The experimental part consisted of a study of the dependence of the iterations required to ensure
the tolerance of the equal-chord partition on the number of segments for different algorithm options, the
effect of increasing the tolerance on the increase in iterations, and the influence of the numerical solve
method’s tolerance. Experiments were also conducted to measure the executing time for sequential and
parallel versions in various segmentation degrees.

As a result of the research, it was found that the proposed algorithm is quite suitable for the equal chord
segmentation of flat parametric curves in a wide range of segment values. It was established that with an
increase in the degree of segmentation, the iterations to achieve the necessary tolerance decreases, reaching
stabilization values significantly less than the number of segments. This led to the fact that starting from a
particular value of the partition degree, its execution time increased linearly. The two-way version of the
algorithm was the most promising for real applications, as it is more stable and flexible. This version is
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suitable for parallel execution by two processes or threads. The two-threaded version showed the best per-
formance of all the algorithm versions. The disadvantages of the presented algorithm should include, first
of all, the limitation of the lower limit of segment number because with a small number of them, the radius
of the partition circle increases, which leads to the presence of several intersection options and the need to
analyze them. Another disadvantage is that obtaining the points by way of the intersection requires solving
the nonlinear equation, which depends on the representation of the curve and can be pretty tricky, even for
numerical methods.

Summarizing the conducted research and developing the proposed approach to the equal chord seg-
mentation of curves, it is possible to highlight the following promising directions for further study:

- study of the conditions for the unambiguity of the intersection between a flat curve and a circle in a
given direction;

- developing the algorithm for partitioning in conditions of multivalued solution of the intersection
equation;

- an extension of the algorithm for the case of spatial parametric curved lines;

- applying approaches to finding partition points that do not require solving the intersection equation or
simplifying it;

- applying the algorithm to curves given by a discrete sequence of points.

Data availability statement. The data and codes that support this study are available in [28].
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Introduction. The problem of discretization of continuous geometric objects is one of the most common
problems of computational geometry. Many applications in all different fields, such as computer vision, robaotics,
signal processing, curve simplification in computer graphics applications, geographic information systems, and
digital manufacturing applications, are based on the discretization and segmentation of plane curves, which are
basic geometric objects. These methods mainly aim to solve the problem of dividing the curve into segments
with the same characteristics or to minimize a predetermined error. The condition of partitioning the curve into
points when the lengths of the chords connecting the segments are equal is an additional factor interesting from
the point of view of practical applications. It allows, for example, to simplify the reproduction of a curve on CNC
machines thanks to the constancy of the tool feed speed [1] or the reproduction of the movement of an object
based on a video recording [2].
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The purpose of the paper is to develop new algorithms for partitioning flat parametric curves under the
condition of equality of chords (chord length connecting segments of the partition) given the two outside points
included in the first and last segment and given a number of segments.

Results. The problem of partitioning a curve in a parametric vector form on the Euclidean plane into seg-
ments equal in chord length having the formulation of [23, 24] was considered. A method of partitioning a flat
parametric curve into equal-chord segments by crossing a circle of constant radius with the subsequent movement
of the circle's center to the intersection point is proposed. The problem of the multivalued solution of the inter-
section equation was considered, which complicates the application of this method. This circumstance limits the
use of circular partitioning by the lower limit of the values of the number of segments. The proposed algorithm
was presented in pseudocode and described. It consists of the following procedures: the procedure for the initial
initialization of the radius of a circle based on a partition with a uniform distribution by a parameter, procedures
for partitioning the curve by a circle for different directions of the circle’s move (direct, reverse, two-way); the
procedure for obtaining an equal-chord partition with a specified tolerance of determining the chord length. For
the real curve's example, experiments were conducted on its equipartition by this algorithm, implemented in the
Julia programming language. It was established that with an increase in the degree of discretization of the value
of the curve, the number of iterations required to achieve the specified accuracy stabilizes. This leads to a linear
dependence of the partition execution time with an increase in the number of segments. It was found that when
the accuracy of the partition is increased, the number of iterations increases slightly compared to the increase in
accuracy.

Conclusions. As a result of the research, it was found that the proposed algorithm is quite suitable for the
equal chord segmentation of flat parametric curves in a wide range of segment values. The two-way version of
the algorithm was the most promising for real applications, as it is more stable and flexible. This version is
suitable for parallel execution by two processes or threads. The two-threaded version showed the best perfor-
mance of all the algorithm versions. The disadvantages of the presented algorithm should include, first of all, the
limitation of the lower limit of number of segments because with a small number of them, the radius of the
partition circle increases, which leads to the presence of several intersection options and the need to analyze these
options. Another disadvantage is that obtaining the points by way of the intersection requires solving the nonlin-
ear equation, which depends on the representation of the curve and can be pretty tricky, even for numerical
methods.

Keywords: pseudocode, iteration, computational complexity, segmentation, chord, intersection equation.
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AJITOPUTM PiBHOJIAHKOBOI'0 PO30OMTTS IJIOCKOI NapaMeTPUYHOI KPMBOI HA OCHOBI
1l IepeTHHY 3 PYXOMHM KOJIOM

Xapxiecvkuil HayioHanbHull ekonomiyHuil yHisepcumem imeni Cemena Kysneys, Xapxkie

Jlucmysanus: frolgx@gmail.com

Betyn. IIpo6nema quckperrn3anii HemepepBHUX TeOMETPUIHUX 00’ €KTIB — I1e OJHA 3 HAWIMOUNIMPEHIMHIX
npobisieM o0uncIoBaIbHOI reoMeTpii. Lis mpoOnema Mae BenMKy KUIBKICTh 3aCTOCYBaHb B yCiX pi3HUX cdepax,
TaKuX sIK KOMIT I0TepHUH 3ip, poOOTOTEXHIKa, 00poOKa CUTHAJIIB, CIIPOIIEHHS KPUBHX Y 3aCTOCYHKaX KOMII f0Te-
pHOI rpadiku, reoiHGopManiiHUX cCHCTEMaX Ta 3aCTOCYHKAX Ui HH(POBOro BUPOOHUIITBA, 3aCHOBaHI Ha JHC-
KpeTH3alil Ta CerMEHTAIlil INTOCKUX KPUBHUX, IKi € 0a30BUMH TeOMEeTPHIHUMU 00’ ekTamMu. OCHOBHA Me€Ta METO-
JiB TMCKpETH3alil MoJsirae y ToMy, o0 BUPIIIUTH 3a1ady PO30UTTS KPUBOi Ha CETMEHTH 3 OJJHAKOBUMH Xapa-
KTepHCTHKaMH a00 MiHIMI3yBaTH 3a3[aJieTilb BU3HAUCHY MOMUIIKY. YMOBa pO30HUTTS KPHBOI TOYKAMU IIPHU PiB-
HOCTI JIOBXUH XOPJ CTATYIOUNX CETMEHTHU € JOAATKOBUM (PaKTOPOM I[IKaBUM 3 TOUKH 30py MPAKTUIHUX 3aCTO-
cyBaHb. BoHa 103BoJIsE, HANTPUKIIA, CIPOCTUTH BiITBOPEHH KPUBOI Ha cTaHKax i3 UITY 3aBIsSKy cTaNOCTi MBH-
JIKOCTI Toavi iHcTpyMeHTa [ 1], abo BinTBOpeHHs pyXy 00’€KTa 3a Bigeo3anucom [2].

Meta po6oTn. Po3po0aeHHs HOBUX aJTOPUTMIB PO3OUTTS IIOCKUX NTapaMEeTPUYHAX KPUBUX 338 YMOBH pi-
BHOCTI JIAHOK (JIOBKHH XOPJI CTSATYIOYHX CETMEHTH PO30UTTS) MPH MOJAHUX JIBOX KpPalHIX TOYKaX, 0 BXOAATh
JI0 TIEPLIOTO Ta OCTAHHBOTO CErMEHTY, Ta 33J]aH0i KUTBKOCTI CETMEHTIB.
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Pe3yabTaTn. Po3risaanacs 3a1ada po30UTTs KpUBOi, 3aJaHOl y IapaMeTpU4Hill BeKTOpHill popMi Ha eBK-
JI/IOBIH TUIOIIWHI, HA PiBHI 3@ JOBKUHOIO XOP/IM CETMEHTH y «KIIAaCHYHOMY» (hopMyiroBanHi [23, 24]. 3amporo-
HOBAaHO METOJ PO3OUTTS IUIOCKOI MapaMeTPHYHOI KPUBOI Ha PIiBHI 3a XOPHOI0 CETMEHTH IEPETHHOM KOJa CTa-
JIOTO pajiiyCcy 3 HaCTYIHUM IEPEMIlIEHHIM LEHTPY KoJia Y TOUKY IepeTuHy. byso posrisHyTo npobiemy Oara-
TO3HAYHOCTI PO3B 3Ky PiBHSIHHS NEPETUHY, 110 YCKIAAHIOE 3aCTOCYBaHHS 1IbOro Meroxy. Ll o6craBuHa oOMe-
KY€ 3aCTOCYBAHHS PO3OHTTS KOJIOM HIDKHBOIO TPAHUIICIO 3HAYCHB KIIBKOCTI cerMeHTiB. byio mpeacraBieHo y
TICEBJIOKO/II 1 OMMCAHO 3alPOTIOHOBAHUI aJlTOPUTM, a caMe: TPOLeIypy EepBICHOT iHiLiami3alii paaiycy Koia Ha
OCHOBI PO30UTTS 3 PIBHOMIPHUM PO3IOALIOM 3a IapaMeTPoM; NPOLELYpU PO3OUTTS KPUBOI KOJIOM JUIA Pi3HUX
HaNpsIMIB TEepeMilIeHHs Koja (MpsAMUiA, 3BOPOTHHUH, JBOCTOPOHHIN); MPOIEypy OTPUMAaHHS PIBHOJIAHKOBOTO
PO3OUTTS 13 3a1laHOI0 TOUHICTIO BU3HAYEHHS OBXUHM Xopau. Ha nmpuxiazi peanbHoi KpuBoi JIiHI{ IpOBENEHO
EKCIEePUMEHTH 13 ii po30UTTS anropuTMOM, peali3oBaHUM Ha MOBI nporpamyBanHs Julia. Bcranosneno, 1o i3
30UIBIICHHAM CTYIEHS JUCKPETH3aLlil KpHBO1 3HAUEHHS KUIBKOCTI iTepaliil, HeoOXiMHUX IS TOCATHEHHS 3a/a-
HOI TOYHOCTI, cTadimi3yeThes. Lle mpu3BOANUTE 10 JIHIHHOT 3aIKHOCTI Yacy BUKOHAHHS PO30OUTTS 31 301JIbIIICH-
HSIM KUJIBKOCT1 CETMEHTiB. BUsiBII€HO, 1110 IpY MiIBUIIEHHS TOYHOCTI pO30UTTS BiJ0OyBa€eThCs HE3HAUHE y TOPiB-
HSIHHS 13 3pOCTaHHSAM TOYHOCTI 301IBIICHHS MOKA3HUKA KIIBKOCTI iTepartiid.

BucHoBKkH. Y pe3ynbTaTi IPOBEAESHUX JOCIiIXKEHb BCTAHOBJIECHO, 10 3aIPOIIOHOBAHUM aJIl'OPUTM LIIKOM
NPUIATHUH JUISl CETMEHTALI] INIOCKUX MapaMeTPHYHAX KPHBUX 32 YMOBH PiBHOCTI JOBXXUH XOPJI Y IIHPOKOMY
Jliara3oHi 3Ha4eHb KUIBKOCTI CerMeHTiB. /1 peallbHIX 3aCTOCYBaHb HAWOUIBII IEPCIIEKTUBHOIO BUSIBUBCS JIBO-
CTOpOHHIM BapiaHT aqropuTMYy, K GBI cTabiapHuUM Ta rHyuKHil. [leit BapianTf anmropurmy m03BoIIsIE BUKOHY-
BaTU PO3OUTTA MapajesbHO JBOMa IpolecaMu abo morokamu. Bepcis 3 A1BOMa IIOTOKaMU NPOAEMOHCTpYBaa
HaMKpallli MOKa3HUKH Yacy BUKOHAHHS cepell BCiX Bepciit anroputmy. J[o HEOMiKiB PEICTABICHOTO AITOPUTMY
CJIiJ] BiIHECTH, HacamIiepe 1, 00MEKEHHsI HU)KHBOI IPpaHHIli 3HAYeHb KIJIbKOCTI CETMEHTIB, aJlKe IPH 1X HEBEIJIHKOT
KUTBKOCTI 30UIBIIYETHCS paliiyc Koja pO30UTTS, 10 MPU3BOIUTD JI0 HASIBHOCTI JIEKIIBKOX BapiaHTIB MEPETUHY
Ta HeOOXiHOCTI aHai3y 1MX BapiaHTiB. HeonikoM Takox € Te, 110 JJIsl OTPUMAaHHs TOYOK PO3OUTTS Ha OCHOBI
MEPETHHY 3 KOJIOM HEOOXIJTHO pO3B’S3yBaTy HENiHIHHE PIBHSHHS, SKE 3aJICKUTH BiJl MPEJCTABICHHS KPUBOI, 1
MOxe OyTH JOCUTH CKJIQJHUM, HaBiTh, UL YHUCEILHUX METO/IIB.
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HEePETUHY.
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