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Example 2. Let n = 1. We find the square of -function:

ClE)s) = (D) = 5 = () = (-C) = c-9),
1.e. 52 _ _6/.

The ring of formal power series of the form u(t,z) = > ug(x)th with coefficients
k=0

ug(z) € K[z1, ..., x,] will be denoted by Kz, ..., z,]'[[t]]-
The partial derivative with respect to ¢ of the series u(t,x) € Klxy,....,z,)'[[t] is

defined by the formula % = > kug(x)t*"1. The partial derivatives D with respect to
k=1

variables x1, ..., z,, of the series u(t, z) € K[x1,...,x,]'[[t]] is defined as follows: DYu(t, z) =

S (Dug)(z)tk.
k=0
Theorem 1. Let K D Q and a € K. Then the Cauchy problem in K[xy,. .., z,)|[[t]:

ou o"u
au

9 Ox1- 0z, u(0,2) = d(x)

o0
has a unique solution. This solution has the form u(t,x) = > upd* 1 (x)tk, where ug = 1
k=0

and up € K satisfy recurrence equation

k
uppr = (k+ D)7 (=1)"a Y (2f + D ujup—y, k=0,1,2,...
j=0

Theorem 2. Let a € K. Then the Cauchy problem in K[z1,...,z,]'[[t]]:
ou o Ou

ot = CUrall g u(0.2) = 6()
7j=1
has a unique solution. This solution has the form u(t,z) = Z —Ak(g:{nz)ak(;nk—i_l(x)tk;
where Ap(r,m) = —"— ("""} are Fuss—Catalan—Raney numbers and —A’“(:I:I’”Q) A
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In the theory of nonlinear dynamic systems, which are described using differential
equations with polynomial right-hand sides, the identification of hidden periodic regimes
(so-called limit cycles) is still relevant. These periodic dynamic trajectories emerge in the
vicinity of equilibrium points in a phenomenal way. They are the ones that determine the
characteristic features of self-oscillatory behavior, which are inherent only to purely nonli-
near objects as a result of the emergence of Andronov-Hopf bifurcations. The methods
for studying bifurcations of this type are quite well known for cases where the emerging
limit cycle is the only one with a well-defined type of stability [1]. Tt should be emphasi-
zed that the most important problem in the study of Hopf bifurcation is the search
for the maximum number of limit cycles that can arise from the equilibrium point wi-
th small perturbations of the parameters of the system under study. This problem was
completely solved only for the quadratic case of polynomial systems, which were consi-
dered by N. N. Bautin’s and E. A. Andronova’s [2]. They proved that the maximum
number of limit cycles that can arise from an equilibrium position (a singular point of
the focus type) in objects described by a system of two differential equations with a
quadratic part is three. The authors of this study have studied in detail a special case of
the Andronova’s system, which has two equilibrium points of the focus type, and have
proven that three limit cycles arise around each of these foci [3]. However, it should be
noted that the Bautin’s and Andronova’s systems contain only five nonlinear parameters,
i.e. these systems are special cases of a general type system in which all six coefficients
of the quadratic terms are nonzero. Thus, the search for a rational way to determine
the cyclicity of a singular point for a six-parameter system of differential equations with
quadratic right-hand sides is relevant.

Let us consider a system of two differential equations containing polynomials of no
higher than the second degree:

dx 5

E = axr + YY + 05201152 + 112y + Qp2Y

dy
Fri 0z + By + Paor® + fr1xy + Bo2y?
where all coefficients of quadratic terms are not equal to zero.

It is obvious that system (1) has a trivial equilibrium position x = 0, y = 0. In the
neighborhood of this singular point the characteristic polynomial for system (1) has the
following form:

N —(a+B)A+aB -5 =0. (2)

Assuming that 8 = 2u— «, where p is a small variable, then in this case the characteri-
stic polynomial (2) takes the form:

A —2u\ — 46 — a® + 20 = 0. (3)

If 4 = 0, then the characteristic polynomial (3) has imaginary solutions: A\ » = +iw,
where w = /—v0 — a?. This means that for this type of equilibrium of the system (1)
at the point (0;0) is a complex focus, because when differentiating expression (3) with
respect to the parameter we obtain:

Al ey (4)
dpl,— w

The presence of a complex focus in system (1) gives grounds to assume the existence
of one or more limit cycles in the system under consideration.
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For further analysis of the problem under study, it is necessary to transform system
(1) to the Poincaré normal form. This can be done using variable substitution: x = vz,
y = —ax, — woy. Moreover, using the relation —vJ — o? = 1 we obtain that w = 1. This
allows us to significantly simplify subsequent computational procedures. Assuming that
p =0, system (1) can be written as follows:

dx, x? x2

_dt = —29 + &20—21 + a11r122 + a02—22

. 2 : (5)
o xy Ty

2 boo—L + b bys 2

P 1 + by 5 + 0117122 + 0p2 5

where the parameters asg, a11, g2, bag, b11, boz are expressed algebraically in terms of the

original parameters aso, 11, o2, G20, 11, Soz.
We transform system (5) into a complex differential equation using the variable z =

T+ 1 Ty
dz + G + zZ + = (6)
—_— =z _ ARNA _
dt 920 B g11 go2 9

where Z = 1 — i - x9, and the parameters of equation (6) have the following form:

920 = 0-25(6620 — apz + 2b11 + 1 - (bao — bo2 — 26111)),
g1 = 0.25(&20 + ap2 + 7 - (b20 + bog)),
Jo2 = 0-25(6620 — apz — 2b11 + 1 - (bao — bo2 + 2011))-

To determine the maximum limit cycle multiplicity for equation (6), it is necessary to
calculate the values of the first three Lyapunov focal quantities. In accordance with the
work of H. Zoldek [4], we obtain:

1
L = —§Im(g20g11),

1

lr = _E1m<(920 —4911) (920 + G11)G11902) » (7)

5 _ —
ls = —6—41111((49%1 — 902) (920 + §11)311920)

Thus, in accordance with (7), it can be assumed that there is such a type of relationship
between the parameters of equation (6):

goo = kg1, (8)
from which it follows that:
1. for a complex value of the coefficient & there is only one limit cycle;
2. for a real value of k (but k # —1 and k # 4) there are two limit cycles;
3. if k =4, there are three limit cycles;
4. if k = —1, the system is conservative.

Using relations (6) and (8), we obtain parametric conditions for the existence of three
limit cycles:

{2()11 = 3@20 + 5@02 (9)

2&11 = 5b20 + 3b02
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System (9) describes the dependence of two parameters of the six-parameter quadratic
system of differential equations (5) on its other four parameters, which are free. This is
a consequence of the fact that the first two Lyapunov quantities are equal to zero. The
obtained result confirms the conclusions of N. N. Baunin and E. A. Andronova about the
degree of limit cycle multiplicity equal to three for a system of two differential equations
with quadratic nonlinearity.
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In a free boundary domain Qr = {(z,t) : 0 < x < h(t),0 <t < T}, where h = h(t) is
an unknown function, it is considered an inverse problems for determination of the time
dependent functions by = by(t), by = by(t) in the minor coefficient in one-dimensional
degenerate parabolic equation

U = P a(t)upy + (b1 (£)7 + bo(t))ug + c(x, t)u + f(z,1) (1)

with initial condition
u(:z:, 0) = SO(I% LS [Oa h(())]v (2)

boundary conditions
w(0,6) = (1), u(h(t),1) = palt), t € [0, (3)

and overdetermination conditions
h(t)

/u(x,t)dx = us(t), telo,T]. (4)

0
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