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У звіті представлено результати використання машинного глибокого навчання із 

застосуванням робастних M-оцінок [1] у системах аналізу та розпізнавання сутностей. У таких 

системах, через гетерогенність структур сутностей і систем оброблення даних [2], а також 

вплив зовнішніх чинників, дані, зібрані для прогнозування, можуть містити як гауссовський 

шум, так і випадкові викиди. У зв'язку з цим, для задач прогнозування характеристик трафіку, 

необхідно дослідити можливість та ефективність використання робастних оцінок максимальної 

правдоподібності – М-оцінок. 

У рамках дослідження було запропоновано новий алгоритм, заснований на глибокому 

навчанні, для оцінювання продуктивності мережі (втрати пакетів) з використанням робастних 

M-оцінок замість традиційної оцінки середньоквадратичної помилки (MSE – Mean Square Error) 

у разі наявності викидів, які можуть спотворювати дані навчання. У цьому алгоритмі 

використовують тришарову нейронну мережу прямого поширення, де прихований шар 

складається з 50 прихованих нейронів. 

Було створено набір даних гетерогенного трафіку, заснований на різних сутностях, з 

використанням стандартних інструментів сніфінгу. Цей набір даних було розділено на 

навчальну, тестову і перевірочну підмножини у співвідношенні 80%, 10% і 10% відповідно. Для 

оцінки продуктивності було розроблено модель глибокої нейронної мережі (DNN – Deep Neural 

Network). 

Навчання DNN було проведено з використанням робастного алгоритму зворотного 

поширення. У рамках дослідження було порівняно характеристики продуктивності робастної та 

традиційної DNN за метриками RMSE (корінь із середньоквадратичної помилки) [3] і MAPE 

(середня абсолютна відсоткова помилка) [4] для кожної моделі. 

Для трьох випадків із різними рівнями викидів було досліджено вплив глибокого 

навчання та відповідної нейронної мережі DNN на продуктивність мережі. Ці випадки 

позначаються таким чином: 

Набір A: DNN навчена на даних без шуму.  

Набір B: мережа навчена на даних із включенням гаусівського шуму (GN), G ~ N(0, 0.1).  

Набір C: DNN навчена на даних із включенням гаусівського шуму GN, G ~ N(0, 0.1), а 

також випадкових викидів H1 ~ N(+15, 2), H2 ~ N(-20, 3), H3 ~ N(+30, 1.5), H4 ~ N(-12, 3).  

Зміна даних, що використовується в цьому випадку, визначається таким чином:  

Дані = (1-ε) G + ε(H1+H2+H3+H4), де ε становить 10% від даних. 

Для цього експерименту було згенеровано набір даних на основі моделі мережі 

банковської установи. Потім, точки даних у координатах x і y були піддані спотворенню за 

допомогою гауссовського шуму з нульовим середнім значенням і стандартним відхиленням 0.1, 

G ~ N(0, 0.1). Змінна ε точок даних була випадково обрана, а потім замінена з імовірністю ε 

фоновим шумом, рівномірно розподіленим у заданому діапазоні. 
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DNN-архітектура являє собою багатошарову нейронну мережу прямого поширення 

MFNN, що складається з трьох шарів, включно з одним прихованим шаром зі 100 прихованими 

нейронами. Навчання мережі здійснювалося з використанням робастного алгоритму зворотного 

поширення BP (Back Propagation) [5] і застосуванням функцій втрат, згаданих раніше. У моделі 

глибокого навчання DL (Deep Learning) було обрано найбільш підходящі архітектурні 

параметри, як-от розмір пакета, кількість епох, функція активації, функція втрат, швидкість 

навчання і мінімальні втрати. 

У цьому дослідженні використовували розмір пакета 32, 5000 епох, функцію навчання 

Traincgf, швидкість навчання 10-2 і мінімальні втрати 10-2. Для всіх нейронів у прихованих 

шарах було обрано сигмоїдну функцію активації (Tansig), а для нейрона у вихідному шарі було 

обрано лінійну функцію активації. 

Для забезпечення оптимальної продуктивності DNN необхідно нормалізувати вхідні 

дані, щоб вони перебували в інтервалі [-1, 1], що відповідає фактичним мінімальним і 

максимальним значенням. DNN використовує пропускну спроможність як вхідні дані і втрати 

пакетів як вихідні дані (прогнозований результат) для оцінки оптимальної продуктивності 

мережі на основі зібраного набору даних. Основна мета полягає в розробці робастної нейронної 

мережі DNN, яка здатна оцінювати продуктивність мережі за умов впливу зовнішніх факторів і 

різноманітних умов. 

Для досягнення цієї мети було проведено порівняльне дослідження робастних і 

традиційних DNN з використанням метрик середньоквадратичної помилки RMSE і середньої 

абсолютної помилки у відсотках MAPE. Метою дослідження було визначити, які оцінки 

демонструють найкращі результати для аналізованого додатка. 

𝑅𝑀𝑆𝐸 =  √
∑𝑁

𝑖=1 (𝑡𝑖 −  𝑦𝑖)2

𝑁
 

𝑀𝐴𝑃𝐸 =  
50

𝑛
 ∑

𝑁

𝑖=1

|
(𝑡𝑖 −  𝑦𝑖)

𝑡𝑖
| 

Дослідження показали, що використання робастної оцінки та робастної оцінки Коші 

призводить до збільшення середньоквадратичної помилки більш ніж у п'ять разів, тоді як 

абсолютна помилка є приблизно в 1,5 рази меншою у порівнянні з використанням методу 

найменших квадратів. 
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