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To search for innovative ways of sustainable growth within the trend of global economic expansion, it is necessary to have formalized approaches within the 
framework of the synergetic paradigm – the theory of self-organization in open non-equilibrium systems. One of the most important directions in this regard 
is the conception of innovation diffusion. In this study, the classical logistic model of the spread of an innovative product was considered. The development 
of the mathematical model was implemented based on the dynamic balance of «supply – demand» in the innovation market, both in discrete and continuous 
time. At the same time, the linear dependence of demand on the total volume of innovative products was taken into account, while on the supply side, 
the possibility of technological production constraints was considered, which is reflected in the form of a quadratic dependence of the supply function on 
the quantity of innovative products. In developing the discrete dynamic model, the basic balance equation was transformed into the form of the classical 
logistic equation with known properties, with a further detailed analysis provided in the study. The theoretical results were confirmed through corresponding 
numerical computations and simulation modeling, which illustrated important dynamic regimes such as limit cycles with period doubling, irregular chaotic 
behavior, and others. In continuous time, a mathematical model of innovation diffusion was constructed taking into account delays (distributed time lag), 
considered as a second-order dynamic process. The model was reduced to a system of two differential equations, in which limit cycles with varying stability 
characteristics can exist. Both mathematical models – discrete and continuous – have the same equilibrium states (fixed points), and the dynamics near these 
points significantly depend on the initial conditions.
Keywords: dynamic equilibrium of demand and supply for innovations, logistic curve, dynamic memory, stability of equilibrium positions (fixed points), limit 
cycle, attractor and repulsor, bifurcation, chaos.
DOI:  https://doi.org/10.32983/2222-0712-2025-4-417-427
Fig.: 6. Formulae: 32. Bibl.: 51.
Malyarets Lyudmyla M. – Doctor of Sciences (Economics), Professor, Head of the Department of Economic and Mathematical Modeling, Simon Kuznets 
Kharkiv National University of Economics (9a Nauky Ave., Kharkіv, 61166, Ukraine)
E-mail: malyarets@ukr.net
ORCID: https://orcid.org/0000-0002-1684-9805
Researcher ID: https://www.webofscience.com/wos/author/record/T-9858-2018
Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=57189248374
Voronin Anatolii V. – Candidate of Sciences (Engineering), Associate Professor, Associate Professor of the Department of Economic and Mathematical 
Modeling, Simon Kuznets Kharkiv National University of Economics (9a Nauky Ave., Kharkіv, 61166, Ukraine)
E-mail: voronin61@ukr.net
ORCID: https://orcid.org/0000-0003-1662-6035
Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=58677148800
Lebedeva Irina L. – Candidate of Sciences (Physics and Mathematics), Associate Professor, Associate Professor of the Department of Economic and 
Mathematical Modeling, Simon Kuznets Kharkiv National University of Economics (9a Nauky Ave., Kharkіv, 61166, Ukraine)
E-mail: irina.lebedeva@hneu.net
ORCID: https://orcid.org/0000-0002-0381-649X
Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=57196850420
Lebedev Stepan S. – Senior Lecturer of the Department of Economic and Mathematical Modeling, Simon Kuznets Kharkiv National University of Economics 
(9a Nauky Ave., Kharkіv, 61166, Ukraine)
E-mail: stepan.lebedev@hneu.net
ORCID: https://orcid.org/0000-0001-9617-7481
Scopus Author ID: https://www.scopus.com/authid/detail.uri?authorId=58677849900

UDC 330.46
JEL Classification: С62; O31



418 Проблеми економіки № 4 (66), 2025

Математичні методи та моделі в економіці
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Малярець Л. М., Воронін А. В., Лебедєва І. Л., Лебедєв С. С. Складна динаміка дифузії інновацій

Для пошуку інноваційних шляхів сталого зростання у тренді глобального економічного зростання необхідно мати формалізовані підходи у межах 
синергетичної парадигми – теорії самоорганізації у відкритих нерівноважних системах. У якості одного з найважливіших таких напрямків можна 
виділити концепцію дифузії інновацій. У даному дослідженні було розглянуто класичну логістичну модель розповсюдження інноваційного продукту. 
Розбудова математичної моделі було реалізовано на основі динамічного балансу «попит – пропозиція» на ринку інновацій як у дискретному, так  
і у неперервному часі. При цьому було враховано наявність лінійної залежності попиту від загального обсягу інноваційної продукції, а з боку 
пропозиції – розглянуто можливість існування технологічних обмежень виробництва. що відображається у формі квадратичної залежності 
функції пропозиції від кількості інноваційної продукції. При побудові дискретної динамічної моделі було виконано перетворення базового 
балансового співвідношення до вигляду класичного логістичного рівняння з відомими властивостями, ретельний аналіз наведено в роботі. 
Теоретичні результати було підтверджено завдяки проведенню відповідних числових розрахунків та імітаційного моделювання, завдяки чому 
проілюстровано такі важливі динамічні режими як граничні цикли з подвоєнням періодів, нерегулярна хаотична поведінка та інші. У неперервному 
часі побудовано математичну модель дифузії інновацій з урахуванням запізнення (розподіленого часового лагу), що розглядається як динамічний 
процес другого порядку. Модель приведено до вигляду системи двох диференціальних рівнянь, в якій може існувати граничні цикли з різним 
характером стійкості. Обидві математичні моделі – дискретна і неперервна – мають ті ж самі рівноважні стани (нерухомі точки), а динаміка 
поведінки в околі цих точок суттєво залежить від початкових умов. 
Ключові слова: динамічна рівновага попиту і пропозиції за інноваціями, логістична крива, динамічна пам’ять, стійкість положень рівноваги 
(нерухомих точок), граничний цикл, атрактор і репульсор, біфуркація, хаос.
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Introduction. Under current conditions of global 
multidirectional challenges, the transition to a knowledge 
economy and innovative activity specifically become the key 
to successfully implementing the paradigm of sustainable 
economic development at the level of individual enterprises, 
industries, and the country as a whole. One of the most 
critical issues in ensuring efficient innovative development 
is the synthesis of economic and social evolution, which is 
accompanied by a synergistic effect. Effective resolution of 
this issue is possible only when the management of innovation 
implementation processes is based on mathematical models 
that allow forecasting the characteristics of the system’s 

complex dynamics and identifying ways to overcome crisis 
phenomena. Since this concerns the development of scenarios 
for the evolution of an open non-equilibrium system, such 
as the process of innovation diffusion, and forecasting needs 
to be done over the long term, it is necessary to use dynamic 
mathematical models to construct a model capable of adequately 
describing the state of such a system. Particularly, these are 
models in which time is present not only as an independent 
variable, but the model parameters, explicitly or implicitly, are 
also functions of time.

Both linear and nonlinear models can be used as 
dynamic mathematical models. Linear models are the simplest 
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both in construction and interpretation, which is why they 
are the most widespread. The basis of linear dynamic models 
is the assumption that the predictors, that is, the parameters 
used to build the model, maintain the  constant values within 
the time period for which the model is developed [1-5, etc.]. 
However, linear models do not account for random factors and 
uncertainties, which significantly reduces their accuracy even 
for short-term forecasting. Therefore, when forecasting over a 
sufficiently long period, it is advisable to use nonlinear dynamic 
models to adequately represent the processes occurring in the 
system and ensure forecast accuracy.

Unlike linear models, which assume that during the 
system’s operational period its future state is determined by 
a simple superposition of the influences of various factors, 
whose numerical characteristics remain constant over 
time, nonlinear models take into account the complexity of 
internal processes within the system and the non-additivity 
of their interactions. Such models recognize the presence of 
synergistic effects in the system, that is, effects in which the 
result of the simultaneous influence of factors due to their 
interaction exceeds the sum of the results of each factor’s 
individual influence [6-12 etc.]. Accordingly, nonlinear models 
are capable of predicting and describing phenomena such as 
loss of equilibrium, the emergence of limit cycles, bifurcations, 
and the transition to a chaotic state [13-21 etc.]. This approach 
becomes especially important in studying innovation 
processes, since the innovative development of a system is 
nonlinear in nature [22-28 etc.].

Attention should be paid to certain features of the 
mathematical instruments used in building mathematical 
models of nonlinear dynamics. Economic processes are usually 
considered in discrete time (month, quarter, year), so difference 
equations are used for their modeling [29-32 etc.]. However, 
quite often, a system approach using the mathematical apparatus 
of differential equation theory is applied in constructing 
dynamic mathematical models [33-36 etc.], although within 
these models, time must be considered continuous, which is 
also acceptable. In addition to real variables, mathematical 
models of dynamics can include lag variables. By introducing 
lag variables that describe delays, such models allow the 
influence of external variables on processes to be considered, 
taking into account that the system’s response to this influence 
may be postponed [37-40, etc.].

It should also be emphasized that general systems theory 
allows for the consideration of the interaction of interconnected 
system elements, taking into account feedbacks that can be 
either positive or negative and are nonlinear in nature [41-45, 
etc.]. While positive feedback amplifies the system’s response 
to external influence, the presence of negative feedbacks to 
a certain extent ensures the implementation of system self-
regulation, thereby maintaining its steady development in the 
intended direction. It should be noted that the nonlinear nature 
of feedback in a system can give rise to an entire hierarchy of 
unstable states, which during the system’s development may 
lead to bifurcations, the emergence of limit cycles, homoclinic 
structures, and even chaos [46].

The aim of the present study is to apply mathematical 
dynamic models to explore the phenomenon of innovation 
diffusion as a fundamentally nonlinear process within a  system, 
which may have several equilibrium positions, around 

which markedly different innovation behavior dynamics are 
observed.

Results and discussion. To ensure qualitative forecasting 
of the innovation diffusion process, the mathematical model 
of the object must be constructed taking into account the 
regularities of the system’s functional balance in which this 
process occurs. Let us assume that the market for a certain 
innovative product is characterized by two main variables: 

= ( )p p t  – the unit price of the product, which depends on 
the time t, and = ( )y y t  – the volume of innovative product 
output, which also depends on the time t. Within the framework 
of the approach of Léon Walras and Paul Samuelson [47, 48], 
we will assume that there is a static equilibrium – a balance 
of supply ( , )D p y  and demand ( , )S p y , and therefore the 
satisfying equation is:

	 =( , ) ( , ).D p y S p y 	 (1)

Without violating generality, to simplify further trans
formations using expressions for demand and supply, it is 
reasonable to assume that the price is constant, i. e. =p const
, and we will assume that it is equal to one (conditionally). 
Furthermore, let the volume of demand equal the volume of 
output, i.  e., we have =( , )D p y y . To determine supply, we 

apply a function α= −( )S L y y , where L – the growth limit, 
realization of which is determined by available resources and 
technological constraints, α  – a dimensionality parameter 
responsible for consistency. Such a specification of the function 
implies that there are limits to the growth of innovative product 
output. Considering these assumptions and based on the 
balance equation (1), we obtain the following relationship:

	 α= −( )y L y y 	 (2)

The equation (2) has two particular solutions (singular 
points):

	 =*
1 0y  and 

α
= −*

2
1

.y L  	 (3)

The relation (3) define two equilibrium positions (the so-

called fixed points) of the innovation process, with α
> 1

L .

A dynamic process arises in the presence of a delay factor 
(time lag). This factor can manifest on either the demand side or 
the supply side. In the simplest case, it is reasonable to assume 
a single-step delay from the supply side at discrete time points: 

= 0,1,2,3,...n . Taking into account the balance equation (1) 
and all previous assumptions, this delay can be presented in the 
following form:
	 = =1( ) ( ).n nD y S y 	 (4)

Without loss of generality, with respect to the parameter 
L it is convenient to assume that L = 1. Then the structure of the 
dynamic process can be presented as follows:

	 α+ = −1 (1 ).n n ny y y 	 (5)

This process is characterized by two equilibrium 
positions in the form of two fixed points:
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=

1

* 0y  and 
α

α
−=

2

* 1
,y  where α >1 .	 (6)

It should be noted that at α =1  both equilibrium 
positions merge into one. The nonlinear recurrence relation 
(5) is, in fact, a logistic map with complex dynamic behavior 
[49, 50]. The diversity of trajectories inherent in the dynamic 
equation is quite heterogeneous. They can correspond to 
virtually any evolutionary processes in various scientific fields: 
physics, chemistry, biology, sociology, and economics. One 
may observe numerical sequences whose terms continually 
increase over time, or, conversely, continually decrease. Periodic 
processes with different periods may also occur. Furthermore, 
there may exist solutions where no signs of any regular behavior 
can be detected.

The right-hand side of the difference equation (5) is 
a  quadratic mapping, which has the form

	 α α= − ∈( ) (1 ), [0;1],F y y y y 	 (7)

transforming the segment ∈[0;1]y  into the segment 
α∈[0; 0,25 ].y  Hence, it follows that α< ≤1 4.

Before carrying out a detailed analysis of the properties 
of the quadratic mapping (7), let us consider some examples of 
some individual values of the parameter α ,  for which exact 
recursive solutions of the equation (5) can be determined.

Suppose that α = 2 . Then, the equation (5) takes the 
form:

	 + = −1 2 (1 ),n n ny y y .	 (8)

If an initial condition is set, that is, a certain value of y0, 
then the equation (8) has the following solution:

	 = − − 2
0

1
(1 (1 2 ) ),

2
n

ny y .	 (9)

The solution (9) exhibits stable behavior since it has a 
finite limit as the number of steps approaches infinity:

	 →∞
= 1

lim ,
2nn

y .	 (10)

From the recursive equation (8), it is evident that it has 

two equilibrium positions (fixed points) =
1

* 0y  and =
2

* 1
.

2
y

At this, the point =
2

* 1
2

y  is an attractor, meaning it defines a 

stable state towards which the dynamic system approaches over 

time, while the point =
1

* 0y  is unstable, that is, a repulsor.
Let us consider another interesting case of the behavior of 

the equation (5), namely, at α = 4.  Let us rewrite the equation 
(5) in the following form:

	 + = −1 4 (1 ).n n ny y y 	 (11)

The equation (11) has the general solution:

	 = 2
0sin (2 arcsin ).n

ny y 	 (12)

It is important to emphasize that solution (12) largely 
depends on the initial condition, that is, on the value of 0y  

At this, both fixed points =
1

* 0y  and =
2

* 3
4

y  are unstable, 

and analyzing the properties of periodic solutions (11) and (12) 
appears very complex.

From the properties of mapping (7), it follows that, 
at α = 4 , it transforms the segment ∈[0;1]y  into itself. 
Obviously, in the general case, relation (7) has two fixed 
points: 

=
1

* 0y  and α
α
−=

2

* 1
y . 

Let us find the first derivative of the quadratic mapping. 

It can be put down in the following form:

	 2 .
dF

y
dy

α α= − 	 (13)

From this, it follows that for all values of α< ≤1 4   the 

point =
1

* 0y  is repelling, i.  e., indicates a repulsor. For the 

second fixed point 2

*y , the expression (13) takes the following 
form:

	 α
=

= −
*
2

2 .
y y

dF
dy

	 (14)

Then, from the inequality α− <2 1  it follows that the 

point 
α

α
−=

2

* 1
y   is either an attracting point (attractor) at 

α< ≤1 3 , or a repelling point (repulsor) at α< <3 4 .
The given examples indicate that when analyzing the 

stability of the fixed points of the recurrence equation (5) and, 
accordingly, of the mapping (7), the key factor is the value of the 
dimension parameter α .

Let us examine in more detail the properties of the 
solutions of the equation (5) for all values of the parameter 
α  in the range α< ≤1 4 , based on the data presented in the 
study [49].

At α< ≤1 3 , the equilibrium position =
1

* 0y  is a 

repulsor, and 
α

α
−=

2

* 1
y  is an attractor. In this case, the 

trajectory monotonically converges to the point 
2

*y  at 
α< ≤1 2 , but oscillates at α< ≤2 3 .

If the condition α< < + ≈3 1 6 3,449  is satisfied, 

then there are two pairs of fixed points, namely the pair =
1

* 0y  

and =
2

* 2
3

y , also the pair =
1

* 0y  and 
−=

2

* 6 6
5

y , which are 

repulsors. In addition, an attracting cycle with a period equal 

to 2 arises, formed by the two points 
α α α

α
− − −=

2

1
2 3ˆ .

2
y  

and 
α α α

α
+ − −=

2

2
2 3ˆ ,

2
y  note that these points are not 

stationary ones.
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If α+ ≤ <1 6 3,596,  then all the points mentioned 

above, namely 
1

*y , 
2

*y , 1ŷ  and 2ŷ , become unstable, but a 
new attractor appears, which is a cycle with a period equal to 4, 
provided that α < 3,54 . At α > 3,54 , this new cycle changes 
its stability character and an attracting cycle appears with a 
period equal to 8. 

Thus, a period-doubling bifurcation occurs. And such 
a state of the system can be observed until the parameter α  
reaches the value of α ≈ 3,596 .

At α≤ <3,596 3,83 , all equilibrium positions and 
limit cycles become repelling.

If α≤ <3,83 4,  then cycles with an arbitrary period 
arise.

At α = 4,  besides monotonic and periodic trajectories, 
sequences that have no regularity may appear. This indicates 
the regime of dynamic chaos.

Let us illustrate the features of the system’s dynamic 
behavior using simulation modeling depending on the 
parameter value α . Calculations were performed according to 
the recurrent equation (5) in the MS Excel environment. The 
calculations showed that, at α =1,  the volume of innovative 
product output is described by a function that monotonically 
decreases over time (Fig. 1).

0,012

0,010

0,008

0,006

0,004

0,002

0,000

Yn+1

n3040302010 0

Fig. 1. Dynamics of the volume of innovative product output at α =1,

Within the range of α< <1 2,5 , a monotonic increase 
in the function of innovative product output is observed, and 
this growth is described by an S-shaped curve (Fig. 2). As the 
parameter α  increases within this range, the growth rate of 
the function rises, the number of steps it takes for the function 
to reach its maximum decreases, while the maximum value of 
the function itself increases. 

At α = 2,5,  a monotonic increase in the function is also 
observed until it reaches its maximum, but at this step, cyclic 
oscillations occur, which quickly dampen (Fig. 3).

It should be noted that, at α = 2,5 , the initial maximum 
value occurs already at =11n , and this step corresponds to the 
largest deviation from the maximum value of the function. The 
amplitude of the oscillations decreases rapidly, but cyclicity is 
still observed up to the 20th step. Compared to the range of 

α< <1 2,5,  the maximum value of the innovative product 
output function increases, and the speed of reaching the 
maximum also increases, but this increase is not as significant 
as in the range of α< <1 2,5.
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0,4
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0,0
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a = 1,5 a = 2,0

n2015 30251050

Fig. 2. Dynamics of innovative product output at α< <1 2,5
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At α = 3 , for the first 5 steps, there is a monotonic 
increase in the output of innovative products and reaching 
the maximum value, which is again slightly higher than at the 
previous values of the parameter α  (Fig. 4).

However, after reaching the maximum value, cyclical 
oscillations appear in the system. Over 30 steps, their amplitude 
slightly decreases and reaches a steady value. These cyclical 
oscillations then continue indefinitely.

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,0

Yn+1

n20151050

Fig. 3. Dynamics of innovative product output at α = 2,5
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Fig. 4. Dynamics of innovative product output at α = 3

When the parameter is increased to the value of 
α = 3,5,  a slight increase is again observed in the rate 
at which the innovative product output function reaches 
its maximum level, as well as in the maximum level itself 
compared to the previous parameter value of α  (Fig. 5). 
However, there is an oscillation around the maximum level, 
which refers to its average value.

It should be noted that the amplitude of the oscillations 
remains constant from the moment the function reaches its 
maximum level, although the period consists of two types of 
oscillations (larger and smaller amplitudes). These cyclical 
oscillations continue indefinitely.

At α = 4,  the system is in a state of chaos (Fig. 6).
Thus, Figures 1-6 convincingly illustrate the features 

of the dynamic behavior of the nonlinear system, which were 
formulated in the theoretical analysis presented above.  

Now, we consider a somewhat different version of the 
method for introducing a delay on the supply side that exceeds 
demand. Suppose that the dynamic balance of supply and 
demand contains information about all past values of supply.

 This can be defined as follows:

	
−

− −
=

= ⋅∑
1

1
0

( ) ( ),
n

n n i i
i

D y K S y 	 (15)

where − −1n iK  is a way of mapping the «dynamic memory» 
of previous values of the supply function. Let, for example, 

− −
− − = − 1

1 (1 ) n i
n iK b b  be in a decreasing geometric progression 

with denominator < <0 1.b
The equation (15) can be rewritten with a shift from n  

to +1n :

	
+ −

=

= ⋅∑1
0

( ) ( ).
n

n n i i
i

D y K S y 	 (16)

Let us transform (16) to isolate the supply at the moment 
corresponding to step number n , i. e.

	

− −
+

=

= − ⋅ + − ⋅∑ 1
1

0

( ) (1 ) ( ) (1 ) ( ),
n

n i
n i n

i

D y b b b S y b S y 	(17)
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or

	 + = ⋅ + − ⋅1( ) ( ) (1 ) ( ).n n nD y b D y b S y 	 (18)

The relationship (18) can be expressed in the following 
form:

	 ( )+ − = − −1( ) ( ) (1 ) ( ) ( ) .n n n nD y D y b S y D y 	 (19)

It is clear that the equation (19) has the same equilibrium 

positions as the equation (5), namely =
1

* 0y  and 
α

α
−=

2

* 1
.y  

After substituting into equation (19) the expressions for the 
demand and supply functions at L = 1, we obtain:

	 α α+ = + − − −1 ( (1 ) (1 ) ).n n ny y b b b y 	 (20)

It is evident that the equation (20) is structurally similar 
to the recurrence equation (5). Let us demonstrate this by 

making a change of variable: 
α

α
+ −=

−
(1 )

(1 )
b b

y x
b

. Then the 

equation (20) takes the form:

	 β+ = −1 (1 ),n n nx x x  where β α= + −(1 ) .b b 	 (21)

Thus, up to parameter values, the equation (21) is also 
a logistic mapping, just like the equation (5). This allows for 
a complete analysis of the behavioral properties of solutions 
to the equation (21) based on the results of the analysis of the 
equation (5).

Let us demonstrate another approach. We will consider 
the dynamic process of innovation diffusion as continuous in 
time, which allows the use of the mathematical apparatus of 
integral and differential calculus. Simultaneously, we will also 
assume that the demand function for the innovation at a given 
time moment t depends on all previous values of the supply. 
This can be expressed in the following form:

	 ( ) ( )τ τ τ= − ⋅∫
0

( ) ( ) ( ) .
t

D y t K t S y d
	

(22)

We will choose a «memory» function τ−( )K t  in 
the form of a second-order dynamic chain, which can be put  
down as:
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+=
+ +

1 0
2

1 0

( ) .
c s a

K s
s a s a

	 (23)

where K  is the generating function of a second-order 
differential operator; s  is the operator variable; 0 1 1, ,a a c  are 
the parameters of the differential operator.

After formal transformations of the integral relation (22), 
we obtain a second-order nonlinear differential equation:

	
+ + = +

2

1 0 1 02 ,
d D dD dS

a a D c a S
dt dt dt

	 (24)

taking into account the explicit form of the demand and supply 
functions, this equation takes the form:

α α α α+ − + − + + =
2

2
1 1 0 1 02 ( ) (1 ) 2 0.

d y dy dy
a c a y c y a y

dt dt dt
	

(25)

The equation (25) has two particular solutions =
1

* 0y  

and 
α

α
−=

2

* 1
y , each solution corresponds to an equilibrium 

state of a dynamic system in which the process of spreading an 
innovative product occurs.

Let us analyze the behavioral properties of the differential 

equation (25) near the equilibrium position 
α

α
−=

2

* 1
.y  Let 

us introduce new variables = − *
1 2u y y  and =2 ,

dy
u

dt
, which 

characterize deviations from the equilibrium position. Then 
equation (25) can be viewed as a system of two differential 
equations:

( )α α α α

 =

 = − + − − − −

1
2

22
0 1 1 1 2 1 1 2 0 1

,

(1 ) (2 ) 2 .

du
u

dt
du

a u c a u c u u a u
dt 	

(26)

The linear part of the system (26) corresponds to the 
following characteristic equation:

	 ( )λ α λ α+ − − + − =2
1 1 0(2 ) ( 1) 0.a c a 	 (27)

It follows from the condition α >1  that the roots of 
quadratic equation (27) have the same sign; therefore, the system 
(26) has no saddle-node singular points, and consequently,  
a saddle-node bifurcation cannot occur.

Suppose the condition: α µ= − −1 1(2 )a c , is satisfied, 
where µ  is a small sign-changing parameter. Let us introduce 

the notation α ω− = 2
0( 1)a  and rewrite the characteristic 

equation (27) in the following form:

	 λ µλ ω− + =2 2 0. 	 (28)

At µ → 0 , the equation (28) has complex conjugate 

roots λ ω= ± = −2
1,2 ( 1).i i  Differentiating equation (28) 

with respect to the variable µ , at µ = 0,  we obtain  
λ
µ

= 1
.

2
d
d

 

This result indicates the presence of a Hopf bifurcation in the 
system.

To further analyze the properties of the bifurcation, as 
well as the birth or death of a limit cycle, we reduce system 
(26) to the Poincaré normal form [51]. For this purpose, we 
make the change of variables: =1 1u x  and ω= −2 2u x . After 
performing certain transformations, we obtain the system of 
differential equations:

	

ω

αω α
ω

 = −

 = − +

1
2

22 0
1 1 1 2 1

;

2 .

dx
x

dt
dx a

x c x x x
dt

	 (29)

Let us now rewrite the system (29) in complex form 
using the variable = +1 2 .z x ix

	
ω= + + ⋅ +

2 2

20 11 02 ,
2 2

dz z z
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dt
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where = −1 2 ;z x ix  
α
ω

= 0
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2
a

g i  
αα
ω

= − + 0
20 1 ;

2
a

g c i

αα
ω

= + 0
02 1 .

2
a

g c i

To obtain information about the stability of a limit cycle, 
it is necessary to determine the sign of the first Lyapunov 
coefficient, which is as follows:

	
= − ⋅1 20 11

1
Im( ).

2
l g g 	 (31)

For the system under study, we have

	

α
ω

=
2

1 0
1 2 .

4
c a

l 	 (32)

It can be seen that, at >1 0c , the limit cycle is unstable 

and the self-oscillation regime is hard. Conversely, at <1 0c ,  
a stable limit cycle emerges, and a soft self-oscillation excitation 
regime is observed.

Conclusions. The results presented in this study, both 
in discrete and continuous time, reflect the uneven evolution 
of the system in which  the diffusion of innovations occurs, 
namely, the periodicity of phase changes in cycles and the 
hysteresis inherent in complex systems itself. 

This fully aligns with the patterns of cyclic dynamics. 
Having such information allows for accurate forecasting (based 
on phase trajectories) of the cyclical nature of the processes of 
the spread of an innovative product, as well as predicting crisis 
phenomena such as the emergence of chaos in the innovation 
market, and timely identifying and recognizing undesirable 
trends in the development of innovation processes. The 
contemporary, powerful mathematical framework of nonlinear 
dynamics, synergetics, and oscillation theory makes it possible, 
with considerable reliability, to predict and identify the crisis 
state of a system in which innovation diffusion occurs, and to 
determine efficient ways to overcome crisis phenomena. 
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This can serve as the foundation for an anti-crisis 
program when developing the government’s innovation 
policy.
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