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To search for innovative ways of sustainable growth within the trend of global economic expansion, it is necessary to have formalized approaches within the
framework of the synergetic paradigm — the theory of self-organization in open non-equilibrium systems. One of the most important directions in this regard
is the conception of innovation diffusion. In this study, the classical logistic model of the spread of an innovative product was considered. The development
of the mathematical model was implemented based on the dynamic balance of «supply — demand» in the innovation market, both in discrete and continuous
time. At the same time, the linear dependence of demand on the total volume of innovative products was taken into account, while on the supply side,
the possibility of technological production constraints was considered, which is reflected in the form of a quadratic dependence of the supply function on
the quantity of innovative products. In developing the discrete dynamic model, the basic balance equation was transformed into the form of the classical
logistic equation with known properties, with a further detailed analysis provided in the study. The theoretical results were confirmed through corresponding
numerical computations and simulation modeling, which illustrated important dynamic regimes such as limit cycles with period doubling, irregular chaotic
behavior, and others. In continuous time, a mathematical model of innovation diffusion was constructed taking into account delays (distributed time lag),
considered as a second-order dynamic process. The model was reduced to a system of two differential equations, in which limit cycles with varying stability
characteristics can exist. Both mathematical models — discrete and continuous — have the same equilibrium states (fixed points), and the dynamics near these
points significantly depend on the initial conditions.
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Manspeys /1. M., BopoHit A. B., flebedesa 1. /1., /le6edes C. C. CknadHa duHamika dudpysii iHHosayili

[1na nowyKy iHHOBayiliHUX WAsXie cMaAno20 3poCMaHHA y mpeHdi 2106a16H020 eKOHOMIYHO20 3pOCMAHHSA HEOBXIOHO Mamu (hopMani308aHi NIOXo0U y MeXax
CUHepzemuYHoi napaduemu — meopii camoopeaHi3ayii y 8IOKpUMUX HepigHOBAMXHUX cucmemax. Y AKocmi 00H020 3 HalBAXAUBIWUX MAKUX HAMPAMKIE MOXHA
gudinumu KoHyenuyito dudysii iHHosayjll. ¥ daHomy docaidnceHHi 6y0 po3enaHymo KAacu4Hy no2icmuyHy modens po3nosctodeHHs iHHOBAYiliHO20 mpodykmy.
Po36ydosa mamemamuyHoi modeni 6ya0 peani3o8aHo Ha 0OCHO8I OUHAMIYHO20 BANAHCY «MONUM — MPONO3UYiA» HA PUHKY iIHHOBAYIU AK y OUCKpemHoMy, maK
iy HenepepsHomy yaci. pu ybomy byno 8paxo8aHo HaABHICMb NiHIlIHOI 3anexcHocmi nonumy 8id 3a2anbHo20 0bcAzy iHHoauiliHoI MpodyKyii, a 3 oKy
npono3uyii — po32AHyMo Mo¥AUBICMb ICHYBAHHA MexXHOM02iYHUX 0OMeeHb BUPOBHUYMEBA. Wo 8i006PaXAEMbCA Y hopmi K8aOPaMUYHOI 3aerHoCmi
yHKyii nponosuyii 8id kinekocmi iHHosayiliHoi Mpodykyii. Mpu mobydosi duckpemHoi duHamiyHoi mModeni 6yno BUKOHAHO MepemeopeHHs 6a308020
banaHcosozo cnigsioHoweHHA 00 8U2AAGY KAACUYHO20 f102ICMUYHO20 PiBHAHHA 3 BI0OMUMU 8aacmusocmAMU, pemenbHuli aHani3 HagedeHo 8 pobomi.
TeopemuyHi pesynbmamu 6yno niomeepoxeHo 3a805KU nposedeHH!0 BIOMOBIOHUX YUCAOBUX PO3PAXYHKIE Ma iMIMAyiliHO20 MOOetOBAHHSA, 3a80AKU YoMy
MPoiNtOCMpPOBaHO Maki 8aXIUSI OUHAMIYHI PeXUMU AK 2pAHUYHI YUK/U 3 TOOBOEHHAM nepiodis, HepezynapHa Xaomuy4Ha nosediHka ma iHwi. Y HenepepeHomy
yaci nobydosaHo mamemamuyHy modesns Oucysii iHHoBayili 3 ypaxy8aHHAM 3ari3HeHHS (P03M0JineH020 4aco8020 /1azy), W0 po32nA00EMbCA AK OUHAMIYHUL
npouec 0py2020 nopAdky. Modenb npusedeHo 00 8uenady cucmemu 080X OupepeHyiansHUX piBHAHb, 8 AKIl Moxce iCHY8aMU 2PAHUYHI YUKAU 3 Pi3HUM
xapakmepom cmilikocmi. 06udsi MamemamuyHi Modesni — OUCKPeMHa i HermepepsHa — MaoMb Mi H Cami piBHOBAHI CMAHU (HepyXomi MoYKu), a duHamika
n108e0diHKU 8 OKOAI YUX MOYOK CymmESO 3asexums 8i0 MOYaMKO8UX YMO8.

Kntouoei cnoea: duHamivHa pieHosaza nonumy i mpono3uyii 3a iHHOBAYIAMU, 102ICMUYHA Kpuea, OUHAMIYHA Nam’ame, cmilikicmb MosnoMeHy pigHosazu
(Hepyxomux mo4ok), epaHu4Hul Yuka, ampakmop i penynbcop, biypkauis, xaoc.
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Introduction. Under current conditions of global
multidirectional challenges, the transition to a knowledge
economy and innovative activity specifically become the key
to successfully implementing the paradigm of sustainable
economic development at the level of individual enterprises,
industries, and the country as a whole. One of the most
critical issues in ensuring efficient innovative development
is the synthesis of economic and social evolution, which is
accompanied by a synergistic effect. Effective resolution of
this issue is possible only when the management of innovation
implementation processes is based on mathematical models
that allow forecasting the characteristics of the system’s

complex dynamics and identifying ways to overcome crisis
phenomena. Since this concerns the development of scenarios
for the evolution of an open non-equilibrium system, such
as the process of innovation diffusion, and forecasting needs
to be done over the long term, it is necessary to use dynamic
mathematical models to constructamodel capable of adequately
describing the state of such a system. Particularly, these are
models in which time is present not only as an independent
variable, but the model parameters, explicitly or implicitly, are
also functions of time.

Both linear and nonlinear models can be used as
dynamic mathematical models. Linear models are the simplest
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both in construction and interpretation, which is why they
are the most widespread. The basis of linear dynamic models
is the assumption that the predictors, that is, the parameters
used to build the model, maintain the constant values within
the time period for which the model is developed [1-5, etc.].
However, linear models do not account for random factors and
uncertainties, which significantly reduces their accuracy even
for short-term forecasting. Therefore, when forecasting over a
sufficiently long period, it is advisable to use nonlinear dynamic
models to adequately represent the processes occurring in the
system and ensure forecast accuracy.

Unlike linear models, which assume that during the
system’s operational period its future state is determined by
a simple superposition of the influences of various factors,
whose numerical characteristics remain constant over
time, nonlinear models take into account the complexity of
internal processes within the system and the non-additivity
of their interactions. Such models recognize the presence of
synergistic effects in the system, that is, effects in which the
result of the simultaneous influence of factors due to their
interaction exceeds the sum of the results of each factor’s
individual influence [6-12 etc.]. Accordingly, nonlinear models
are capable of predicting and describing phenomena such as
loss of equilibrium, the emergence of limit cycles, bifurcations,
and the transition to a chaotic state [13-21 etc.]. This approach
becomes especially important in studying innovation
processes, since the innovative development of a system is
nonlinear in nature [22-28 etc.].

Attention should be paid to certain features of the
mathematical instruments used in building mathematical
models of nonlinear dynamics. Economic processes are usually
considered in discrete time (month, quarter, year), so difference
equations are used for their modeling [29-32 etc.]. However,
quite often, a system approach using the mathematical apparatus
of differential equation theory is applied in constructing
dynamic mathematical models [33-36 etc.], although within
these models, time must be considered continuous, which is
also acceptable. In addition to real variables, mathematical
models of dynamics can include lag variables. By introducing
lag variables that describe delays, such models allow the
influence of external variables on processes to be considered,
taking into account that the system’s response to this influence
may be postponed [37-40, etc.].

It should also be emphasized that general systems theory
allows for the consideration of the interaction of interconnected
system elements, taking into account feedbacks that can be
either positive or negative and are nonlinear in nature [41-45,
etc.]. While positive feedback amplifies the system’s response
to external influence, the presence of negative feedbacks to
a certain extent ensures the implementation of system self-
regulation, thereby maintaining its steady development in the
intended direction. It should be noted that the nonlinear nature
of feedback in a system can give rise to an entire hierarchy of
unstable states, which during the system’s development may
lead to bifurcations, the emergence of limit cycles, homoclinic
structures, and even chaos [46].

The aim of the present study is to apply mathematical
dynamic models to explore the phenomenon of innovation
diffusion as a fundamentally nonlinear process within a system,
which may have several equilibrium positions, around

which markedly different innovation behavior dynamics are
observed.

Results and discussion. To ensure qualitative forecasting
of the innovation diffusion process, the mathematical model
of the object must be constructed taking into account the
regularities of the system’s functional balance in which this
process occurs. Let us assume that the market for a certain
innovative product is characterized by two main variables:
p=p(t) - the unit price of the product, which depends on
the time ¢, and y= y(t) — the volume of innovative product
output, which also depends on the time . Within the framework
of the approach of Léon Walras and Paul Samuelson [47, 48],
we will assume that there is a static equilibrium — a balance
of supply D(p,y) and demand S(p,y), and therefore the
satisfying equation is:

D(P»J’)=S(P;y)- (1)

Without violating generality, to simplify further trans-
formations using expressions for demand and supply, it is
reasonable to assume that the price is constant, i. e. p=const
, and we will assume that it is equal to one (conditionally).
Furthermore, let the volume of demand equal the volume of

output, i. e., we have D(p,y)=y. To determine supply, we

apply a function S=0.(L—y)y, where L — the growth limit,
realization of which is determined by available resources and
technological constraints, Ot - a dimensionality parameter

responsible for consistency. Such a specification of the function
implies that there are limits to the growth of innovative product
output. Considering these assumptions and based on the
balance equation (1), we obtain the following relationship:

y=o(L—-y)y (2)
The equation (2) has two particular solutions (singular
points):
y, =0 and y, -1, (3)
o
The relation (3) define two equilibrium positions (the so-

1
called fixed points) of the innovation process, with L > a .

A dynamic process arises in the presence of a delay factor
(time lag). This factor can manifest on either the demand side or
the supply side. In the simplest case, it is reasonable to assume
a single-step delay from the supply side at discrete time points:

n=0,1,2,3,.... Taking into account the balance equation (1)

and all previous assumptions, this delay can be presented in the
following form:

D(,-)=5(y,)- (4)

Without loss of generality, with respect to the parameter
L it is convenient to assume that L = 1. Then the structure of the
dynamic process can be presented as follows:

yn+1=ayn(l_yn)' (5)

This process is characterized by two equilibrium
positions in the form of two fixed points:

Mpo6rnemn ekoHomikm Ne 4 (66), 2025
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* O
Y, =0 and ¥, =T, where o0 >1. (6)

It should be noted that at ot=1 both equilibrium
positions merge into one. The nonlinear recurrence relation
(5) is, in fact, a logistic map with complex dynamic behavior
[49, 50]. The diversity of trajectories inherent in the dynamic
equation is quite heterogeneous. They can correspond to
virtually any evolutionary processes in various scientific fields:
physics, chemistry, biology, sociology, and economics. One
may observe numerical sequences whose terms continually
increase over time, or, conversely, continually decrease. Periodic
processes with different periods may also occur. Furthermore,
there may exist solutions where no signs of any regular behavior
can be detected.

The right-hand side of the difference equation (5) is
a quadratic mapping, which has the form

E,(y)=0y(1-y), ye[0;1], ()
transforming the segment y€[0;1] into the segment

AS [0;0,250.]. Hence, it follows that 1< 0ot < 4.
Before carrying out a detailed analysis of the properties
of the quadratic mapping (7), let us consider some examples of

some individual values of the parameter o, for which exact
recursive solutions of the equation (5) can be determined.

Suppose that o0 =2 . Then, the equation (5) takes the
form:

yn+l:2yn(1_,yn)' (8)

If an initial condition is set, that is, a certain value of y,,
then the equation (8) has the following solution:

1 »
7, =5 0=(=23,)") ©

The solution (9) exhibits stable behavior since it has a
finite limit as the number of steps approaches infinity:

1
limy, =—. (10)

n—yoco 2

From the recursive equation (8), it is evident that it has

two equilibrium positions (fixed points) ¥, =0 and ¥ 2 :E'

.1
At this, the point y, :E is an attractor, meaning it defines a

stable state towards which the dynamic system approaches over

time, while the point y: =0 is unstable, that is, a repulsor.

Let us consider another interesting case of the behavior of

the equation (5), namely, at 0L =4. Let us rewrite the equation
(5) in the following form:

yn+1:4yn(1_yn)‘ (11)
The equation (11) has the general solution:
y, =sin*(2" arcsin\/%). (12)

It is important to emphasize that solution (12) largely
depends on the initial condition, that is, on the value of y,

At this, both fixed points y: =0 and y; =% are unstable,

and analyzing the properties of periodic solutions (11) and (12)
appears very complex.

From the properties of mapping (7), it follows that,
at o0=4, it transforms the segment yE[O;l] into itself.
Obviously, in the general case, relation (7) has two fixed
points:

. .oo-1
y,=0 and ¥, :T,
Let us find the first derivative of the quadratic mapping.

It can be put down in the following form:

dF
—=0—20). (13)
dy

From this, it follows that for all values of 1<t <4 the
point y: =0 is repelling, i. e, indicates a repulsor. For the

second fixed point Y, , the expression (13) takes the following
form:

dF
dy J’=;V;

Then, from the inequality [2—0t|<1 it follows that the

=2—0l. (14)

R o I . .
point y = is either an attracting point (attractor) at
1<0o <3, or a repelling point (repulsor) at 3< 0 <4 .

The given examples indicate that when analyzing the
stability of the fixed points of the recurrence equation (5) and,
accordingly, of the mapping (7), the key factor is the value of the
dimension parameter O .

Let us examine in more detail the properties of the
solutions of the equation (5) for all values of the parameter

ol intherange 1<0. <4, based on the data presented in the
study [49].

At 1< <3, the equilibrium position y: =0 is a

repulsor, and y; = is an attractor. In this case, the

trajectory monotonically converges to the point y; at
1<0o<2,butoscillates at 2<0L <3.

If the condition 3<O < 1+\/g = 3,449 is satisfied,

then there are two pairs of fixed points, namely the pair y: =0
6-6

.2 . .
and ¥, =§ ,also the pair ¥, =0 and ¥, = ,which are

repulsors. In addition, an attracting cycle with a period equal

a—vo’—200-3

to 2 arises, formed by the two points y, = 2
(0

o+Vot—20-3

and j,= ol

, note that these points are not

stationary ones.

420
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If 1+/6 <o < 3,596, then all the points mentioned

above, namely y:, y; , 9, and y,, become unstable, but a
new attractor appears, which is a cycle with a period equal to 4,

provided that ot <3,54 . At ol > 3,54, this new cycle changes
its stability character and an attracting cycle appears with a
period equal to 8.

Thus, a period-doubling bifurcation occurs. And such

a state of the system can be observed until the parameter ot
reaches the value of o = 3,596 .

At 3,596<01< 3,83, all equilibrium positions and
limit cycles become repelling.

Yn+1

If 3,83<0.<4, then cycles with an arbitrary period
arise.

At 0. =4, besides monotonic and periodic trajectories,
sequences that have no regularity may appear. This indicates
the regime of dynamic chaos.

Let us illustrate the features of the system’s dynamic
behavior using simulation modeling depending on the
parameter value 0 . Calculations were performed according to
the recurrent equation (5) in the MS Excel environment. The

calculations showed that, at ot =1, the volume of innovative
product output is described by a function that monotonically
decreases over time (Fig. 1).

0,012

0,010

0,008 —

0,006

0,004

0,002

0,000

0 10 20

30 40 30 n

Fig. 1. Dynamics of the volume of innovative product output at ot =1

Within the range of 1<l <2,5, a monotonic increase
in the function of innovative product output is observed, and
this growth is described by an S-shaped curve (Fig. 2). As the
parameter O, increases within this range, the growth rate of
the function rises, the number of steps it takes for the function
to reach its maximum decreases, while the maximum value of
the function itself increases.

At o0 =2,5, amonotonic increase in the function is also
observed until it reaches its maximum, but at this step, cyclic
oscillations occur, which quickly dampen (Fig. 3).

It should be noted that, at ot =2,5 , the initial maximum
value occurs already at n =11, and this step corresponds to the
largest deviation from the maximum value of the function. The
amplitude of the oscillations decreases rapidly, but cyclicity is
still observed up to the 20th step. Compared to the range of

1< <2,5, the maximum value of the innovative product

output function increases, and the speed of reaching the
maximum also increases, but this increase is not as significant

as in the range of 1< <2,5.

Yn+1
0,6
0,5 ; v
04 /
/i

/
03 7 /

0,2 /i /

/
/
0,1 L

0,0
0 5 10

a=15

20 25 30 n

———a=20

Fig. 2. Dynamics of innovative product outputat 1 <o <2,5
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Fig. 3. Dynamics of innovative product outputat ot =2,5

At ou=3, for the first 5 steps, there is a monotonic
increase in the output of innovative products and reaching
the maximum value, which is again slightly higher than at the

previous values of the parameter ¢ (Fig. 4).

Yo+

However, after reaching the maximum value, cyclical
oscillations appear in the system. Over 30 steps, their amplitude
slightly decreases and reaches a steady value. These cyclical
oscillations then continue indefinitely.

08
RRalne

0,7
0,6

0,5

04 I
03 l
;

0.2

0,1
0,0

0 10 20 30

40 50 60 70 n

Fig. 4. Dynamics of innovative product outputat oL =3

When the parameter is increased to the value of

o =3,5, a slight increase is again observed in the rate
at which the innovative product output function reaches
its maximum level, as well as in the maximum level itself
compared to the previous parameter value of o (Fig. 5).
However, there is an oscillation around the maximum level,
which refers to its average value.

It should be noted that the amplitude of the oscillations
remains constant from the moment the function reaches its
maximum level, although the period consists of two types of
oscillations (larger and smaller amplitudes). These cyclical
oscillations continue indefinitely.

At 0. =4, the system is in a state of chaos (Fig. 6).

Thus, Figures 1-6 convincingly illustrate the features
of the dynamic behavior of the nonlinear system, which were
formulated in the theoretical analysis presented above.

Now, we consider a somewhat different version of the
method for introducing a delay on the supply side that exceeds
demand. Suppose that the dynamic balance of supply and
demand contains information about all past values of supply.

This can be defined as follows:

n—1
D(yn)zan—i—l'S(yi)r (15)

i=0
where K _, | is a way of mapping the «dynamic memory»

of previous values of the supply function. Let, for example,
I<n—i—1
with denominator 0<b<1.

The equation (15) can be rewritten with a shift from n
ton+1:

=(1-b)b""" beinadecreasing geometric progression

D(ynﬂ):ZKn—i'S(yi)' (16)
i=0

Let us transform (16) to isolate the supply at the moment
corresponding to step number 7 , i. .

D()’m) Zbi(l_b)bn_i_l S()’,)‘F(l—b)s()’n), (17)

i=0

422

Mpo6rnemn ekoHomikm Ne 4 (66), 2025



MartemaTtunyHi meToan Ta MoAei B eKOHOMiLli

Yn+1

1,0 *
0,9
08 el L ]

—
—®
t—
—
—
—
—

—
—®

—
—
L —
— |
— |
—
—_—

——

—
—_—
l_—
— |
—
—
—

o 1T
1

0.5

L |

04

—

03

0.2 I

0,0

0 10 20 30 40 50 60 70 n
Fig. 5. Dynamics of the innovative product output at oL = 3,5
Ynei
1,2
10 —o PR (B 4 o —9o 3 . 9 L
® I (1 4 ®
0,38 B‘ ,!\ ’ q ’!\
0,6 T l
04 ® l
e R i
[ ]
s 8 !
Wil U g o F
0 20 40 60 80 100 n

Fig. 6. Dynamics of the innovative product output at ot =4

or

D(y,..)=b-D(y,)+(1-b)-S(y,). (18)

The relationship (18) can be expressed in the following
form:

D(y,..)-D(y,)=(1-b)(S(y,)-D(y,)) (19

It is clear that the equation (19) has the same equilibrium
positions as the equation (5), namely y: =0 and y: =OCT_1.
After substituting into equation (19) the expressions for the
demand and supply functions at L = 1, we obtain:

Y =2, (b+(1-bo—(1-b)ay,).

It is evident that the equation (20) is structurally similar
to the recurrence equation (5). Let us demonstrate this by

b+(1-b)o
(1-b)o

(20)

making a change of variable: y= x. Then the

equation (20) takes the form:

x,,, =Px,(1-x,), where B=b+(1-b)a..  (21)

Thus, up to parameter values, the equation (21) is also
a logistic mapping, just like the equation (5). This allows for
a complete analysis of the behavioral properties of solutions
to the equation (21) based on the results of the analysis of the
equation (5).

Let us demonstrate another approach. We will consider
the dynamic process of innovation diffusion as continuous in
time, which allows the use of the mathematical apparatus of
integral and differential calculus. Simultaneously, we will also
assume that the demand function for the innovation at a given
time moment ¢ depends on all previous values of the supply.
This can be expressed in the following form:

D(y(t))= J.K(t—r)-S(y(r))dr.

(22)

We will choose a «memory» function K(t—T) in
the form of a second-order dynamic chain, which can be put

down as:
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c,sta,

K(s)= (23)

) .
s t+assta,

where K is the generating function of a second-order

differential operator; s is the operator variable; a,,a,,c, are
the parameters of the differential operator.
After formal transformations of the integral relation (22),
we obtain a second-order nonlinear differential equation:
d’D  dD ds
—+a—+a,D=c,—+a,S, (24)
dt dt dt
taking into account the explicit form of the demand and supply
functions, this equation takes the form:
d d d
—2}+ (a,— cl(x)—y+ a,(1—ot)y+ 2c1ay—y+ a,0y* =0.
dt dt d (25)

The equation (25) has two particular solutions y: =0

-1
, each solution corresponds to an equilibrium

PR 0/
and y, =

state of a dynamic system in which the process of spreading an
innovative product occurs.
Let us analyze the behavioral properties of the differential

. I . < o1
equation (25) near the equilibrium position y, =———. Let
o

. d
us introduce new variables u;, = y—y, and u, zd_}t] ,» which

characterize deviations from the equilibrium position. Then
equation (25) can be viewed as a system of two differential
equations:

du,

@

du, )
I =a, ¢! —Oc)u1 + (4:1 2-a)- a, )u2 —2c,0luu, —a,0lu, .

(26)

The linear part of the system (26) corresponds to the
following characteristic equation:

AP +(a,—c,(2—0) M\ +a,(0.—1)=0. 27)

It follows from the condition of>1 that the roots of
quadratic equation (27) have the same sign; therefore, the system
(26) has no saddle-node singular points, and consequently,
a saddle-node bifurcation cannot occur.

Suppose the condition: @, =¢,(2—0.)—W, is satisfied,

where W is a small sign-changing parameter. Let us introduce

the notation a, (00—1)=m> and rewrite the characteristic

equation (27) in the following form:
A —ur+o*=0. (28)
At L —0, the equation (28) has complex conjugate

roots 7\,1y2=ii(1) (i* =-1). Differentiating equation (28)

d 1
with respect to the variable L, at L =0, we obtain d_ = S
u
This result indicates the presence of a Hopf bifurcation in the

system.

To further analyze the properties of the bifurcation, as
well as the birth or death of a limit cycle, we reduce system
(26) to the Poincaré normal form [51]. For this purpose, we
make the change of variables: u, =x, and u, =—x, . After
performing certain transformations, we obtain the system of
differential equations:

dx,
—=—0x,;
dt

dx a,0.
2 =@, —2c,0x,x, +——x7.
t

(29)

Let us now rewrite the system (29) in complex form
using the variable z=1x, +ix,.

2

dz . z -
E:’mz—’-gzo?'i'guz'z"'goz ’ (30)

SIR

where zZ=x —ix,; g, =iﬂ; 2 =—c1(x+iﬂ;
20 20
g0 =00+ iﬂ.
20
To obtain information about the stability of a limit cycle,
it is necessary to determine the sign of the first Lyapunov

coefficient, which is as follows:

1
L Z_EIm(gzo'gn)' (31)
For the system under study, we have
€,a,0.°
A :—14 Z) —. (32)

It can be seen that, at ¢, >0, the limit cycle is unstable

and the self-oscillation regime is hard. Conversely, at ¢, <0,

a stable limit cycle emerges, and a soft self-oscillation excitation
regime is observed.

Conclusions. The results presented in this study, both
in discrete and continuous time, reflect the uneven evolution
of the system in which the diffusion of innovations occurs,
namely, the periodicity of phase changes in cycles and the
hysteresis inherent in complex systems itself.

This fully aligns with the patterns of cyclic dynamics.
Having such information allows for accurate forecasting (based
on phase trajectories) of the cyclical nature of the processes of
the spread of an innovative product, as well as predicting crisis
phenomena such as the emergence of chaos in the innovation
market, and timely identifying and recognizing undesirable
trends in the development of innovation processes. The
contemporary, powerful mathematical framework of nonlinear
dynamics, synergetics, and oscillation theory makes it possible,
with considerable reliability, to predict and identify the crisis
state of a system in which innovation diffusion occurs, and to
determine efficient ways to overcome crisis phenomena.

424
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This can serve as the foundation for an anti-crisis
program when developing the government’s innovation
policy.
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