Khrystych O.V., Korogodska A.N., Shabanova G.N., Mykhailova E.A. Optimization of spinel-containing alumina cements based on the CaO–Al₂O₃–CoO–NiO system composition / O.V. Khrystych, A.N. Korogodska, G.N. Shabanova, E.A. Mykhailova // Voprosy khimii i khimicheskoi tekhnologii. – 2025. – No. 4. – P. 13-22. This paper presents the optimization of alumina cement formulations and an experimental investigation of the physical, mechanical, and technical properties of high performance, heat resistant cements derived from the CaO-Al₂O₃-CoO-NiO system. Compositions were optimized using a simplex lattice experimental design and visualized with compositionproperty simplex diagrams. The studies were carried out based on the CoAl₂O₄-NiAl₂O₄-CaAl₄O₇-CaAl₂O₄ tetrahedron compounds simultaneously enhance the heat resistance and strength of the developed combinations. All three-component cross-sections in the defined tetrahedron of the CaO-Al₂O₃-CoO-NiO system were evaluated and formulations were identified within the following ranges (wt.%): CoAl₂O₄ 5-30; NiAl₂O₄ 5–30; CaAl₄O₇ 20–40; and CaAl₂O₄ 20–50. Physicomechanical testing determined the most promising composition to be (wt.%): CaAl₂O₄ 5 0; CoAl₂O₄ 20; and NiAl₂O₄ 30. This cement exhibits a high strength at the age of 28 days of curing (62 MPa) and fire resistance up to 1720°C. The refractory spinel containing alumina cement was synthesized using industrial chemical wastes as raw materials. The results demonstrate that these resource saving refractory cements meet all relevant standards and offer competitive performance. Employing recycled raw materials enables the development of novel refractory binders and contributes to improved environmental conditions in Ukraine's industrial regions. Keywords: optimization, multicomponent system, experimental design, synthesis; resource- efficient technology, refractoriness, strength.