

DEVELOPMENT MANAGEMENT

UDC 003.3:004.9:658.5 DOI: 10.63341/devt/3.2025.57 Vol. 24, No. 3. 2025

5

Overview of artificial intelligence-based project management tools for business representatives

Oleksandr Bieliaiev*

Postgraduate Student State Biotechnological University 61002, 44 Alchevskykh Str., Kharkiv, Ukraine https://orcid.org/0000-0003-0212-8895

Abstract. The study aimed to identify effective artificial intelligence tools that can improve the productivity, accuracy, and flexibility of management processes in the field of project management. The study analysed the functionality of digital project management platforms and artificial intelligence-based tools, as well as cases of their practical application in international and Ukrainian companies. Trello, Wrike, Monday, Microsoft Power Automate, Taskade and Timely were noted to differ in terms of automation, integration, process visualisation and flexibility. For example, Microsoft Power Automate provides the setup of automated task flows, and Timely provides accurate time tracking. Chat Generative Pretrained Transformer, Gemini, International Business Machines Corporation, Watson Assistant, Jasper, ClickUp Artificial Intelligence Assistant and Fireflies tools increase analytics, personalise processes, support natural language interaction and automate routine tasks. The analysis of the cases proved the effectiveness of artificial intelligence. Duolingo implemented Chat Generative Pre-trained Transformer for adaptive learning, Webster First Federal Credit Union uses Jasper to create marketing content, Lulu Press uses ClickUp Artificial Intelligence Assistant to optimise task management, and Moonfrog Labs integrated Fireflies to analyse online meetings. Asana, used by Kenshoo Skai, improved the coordination of multichannel campaigns, while Zoho Projects at Sgurr Energy increased control over technical phases of projects. Ukrainian examples also demonstrated the successful integration of artificial intelligence tools. Ajax Systems implemented relevant solutions for real-time security monitoring, Nova Poshta optimised logistics and customer support, and Liga:Zakon automated the processing of legal information. The analysis of strengths, weaknesses, opportunities, and threats showed that artificial intelligence tools contributed to the automation and analytical nature of project management, although they required significant resources and specialised training. The practical significance of the study is determined by the identification of tools that can be integrated into management processes to achieve greater efficiency

Keywords: automation; chatbot; forecast; resource allocation; machine learning

INTRODUCTION

Amid rapid technological transformation and growing competition, businesses need innovative approaches to organising and controlling project activities. The use of AI-based (artificial intelligence) tools provides a new level of automation, improves forecast accuracy, optimises resource allocation, and reduces the time required to make management decisions. Companies are increasingly integrating digital platforms with machine learning elements to adapt to market changes and mitigate risks. The absence of set approaches to the introduction of smart technologies

into business processes complicates their effective use in a highly competitive environment.

N. Bolkvadze *et al.* (2023) systematised the areas of application of generative solutions and outlined the key areas of their implementation in global practice, in particular in China, India, Canada, and the United States. The paper provides examples of both successful and ineffective experiences and proposes a five-stage model for integrating AI into the activities of enterprises. In turn, the instability of performance indicators in project management and

Article's History: Received: 29.05.2025; Revised: 19.08.2025; Accepted: 29.09.2025

Suggested Citation:

Bieliaiev, O. (2025). Overview of artificial intelligence-based project management tools for business representatives. *Development Management*, 24(3), 57-67. DOI: 10.63341/devt/3.2025.57.

*Corresponding author

the difficulties in processing large amounts of data have stimulated the search for new technological solutions. V.M. Vasylenko & T.A. Vakalyuk (2024) analysed the potential of AI to transform traditional project management, highlighting its potential in automating routine processes, analytics, risk forecasting, and rational resource allocation. The study also emphasised the importance of ethical implementation of algorithmic solutions and ensuring transparency of their operation.

The low level of digital competence of staff and the lack of adapted strategies for integrating the latest technologies into work processes make it difficult to use AI effectively in management. D. Gudakov & Y. Kolodinska (2025) examined the main directions of AI implementation in communication and management practices in the business environment. In their work, they focused on changes in the structure of workflows arising from the use of generative AI and analysed new requirements for employees' digital skills. The researchers also outlined the risks associated with dependence on algorithms and reduced autonomy of solutions. The use of intelligent systems in business processes requires aligning technical capabilities with the practical needs of managers and specific business objectives. Y. Smoliak & A. Kholodnytska (2024) reviewed the key aspects of introducing AI into the corporate environment, focusing on assessing the efficiency, costs, and automation potential. The study described popular tools already used by companies to optimise operational processes and emphasised the importance of digital literacy among employees. The study analysed the barriers that arise when transitioning to new technologies and emphasised the importance of adapting management strategies to the conditions of digital transformation.

The lack of flexibility of traditional approaches to project management in the context of digital transformation necessitates the introduction of tools that can quickly respond to changes in the environment. R. Snishchenko (2024) examined AI as a mechanism for improving the efficiency of management decisions, emphasising the changing functional roles of the manager in the new economy. The study analysed the potential of generative technologies for processing large amounts of information, forming analytical conclusions and accelerating planning, as well as transforming the competencies of managers who need to master digital tools. In response to the complexity of management processes and the growing information load, Ya. Hrynko (2024) investigated the role of AI in the transformation of strategic management, emphasising its importance for the formation of a new paradigm of interaction between managers and information systems. The study highlights the functionality of AI in trend analysis, scenario forecasting, and decision support, as well as the importance of developing managers' digital competencies.

The low level of adaptation of intelligent systems to the needs of small and medium-sized businesses, as well as the lack of structured approaches to their implementation in management processes, make it difficult to fully utilise the technological potential. I.B. Azarova & T.M. Bezverkhniuk (2024) analysed the benefits of using AI to improve the efficiency of business processes, emphasising the impact of digitalisation on management decision-making. The study presents a classification of AI functions used in

management and identifies areas for optimising the activities of enterprises using automated solutions. The study emphasised the need for digital transformation of Ukrainian business as a condition for maintaining competitiveness. Insufficient integration of advanced digital solutions into the project management system reduces the efficiency and accuracy of management actions. A. Babichev *et al.* (2024) studied the use of AI tools in the context of project management automation, focusing on the possibilities of risk modelling, resource load assessment, and formalisation of scenario analysis. The study identified the functional benefits of using neural networks, machine learning, and data mining, which can significantly improve the efficiency of planning, monitoring, and adjusting project processes.

Despite the developments on the role of AI in management, studies do not contain a systematic review and classification of tools used specifically in project management, nor do they provide empirical assessments of their effectiveness at different stages of business initiatives, which necessitates further research on this topic. The study aimed to summarise the key characteristics of AI-based digital solutions used in project management, with a focus on their feasibility for implementing business initiatives. The main objectives were to conduct a comparative analysis of the functionality of AI tools focused on supporting different stages of the project cycle; and to identify the practical value of using such tools to improve the efficiency of management decisions in business.

MATERIALS AND METHODS

This study used a descriptive approach to systematise current practices of implementing AI in project management. The analysis was based on theoretical models of managerial maturity that are widely used in international practice. In particular, the Organisational Project Management Maturity Model (OPM3) (Miller, 2004) was considered, which provides a systematic assessment of the maturity of an organisation in the context of portfolio and programme management. The Project Management Maturity Model (PMMM) (Samolovac, 2022), which can be used for the diagnosis of the effectiveness of project management procedures, and the PRINCE2 Maturity Model (n.d.) (P2MM), designed for use in organisations implementing the PRINCE2 methodology, were analysed. These models were chosen due to emphasis on strategic planning, compliance with international standards and adaptability to the digital environment.

The study conducted a comparative review of project management platforms and systems that support AI functionality. Trello, which is known for intuitive task visualisation, Wrike, known for its integration with Microsoft Office 365, Monday work management, which provides high flexibility in setting up workflows, Microsoft Power Automate, which emphasises automation of actions, Taskade, a platform with query-based task generation, and Timely, which uses AI to monitor time and improve productivity were considered. They were chosen due to their high level of automation, integration with other services, and adaptability for teams of different sizes. The study addressed the functioning of AI assistants and chatbots, which provide interactive communication and automated user support, such as Chat Generative Pre-trained

Transformer (ChatGPT), Gemini (ex-Bard), and International Business Machines Corporation (IBM) Watson Assistant. This approach also included Jasper, ClickUp AI Assistant, and Fireflies.ai, which can be used to generate content, analyse meetings, and generate reports, and improve project management efficiency.

The Asana and Zoho Projects platforms were also analysed. Asana is used by Kenshoo Skai (n.d.), a company that implements AI in digital marketing. Sgurr Energy (n.d.), a leading engineering consultancy, uses Zoho Projects to manage technical projects. These examples demonstrated the widespread use of AI not only in information technology (IT), but also in energy and services. In addition, Ukrainian cases such as Ajax Systems (n.d.), Nova Poshta (n.d.), and Liga:Zakon (n.d.) were investigated, which demonstrate local examples of successful integration of AI solutions into the business environment. The study also developed a SWOT (strengths, weaknesses, opportunities, threats) analysis of AI integration into project management based on the studies of M.Z. Nabeel (2024), M. Al-Arafat et al. (2025), and M.L. Prasetyo et al. (2025). Based on this, comprehensive recommendations were developed for both internal modernisation of business processes and external adaptation to global technological challenges.

RESULTS

Project management models and typology of AI tools

Project management is a complex set of interconnected processes, where imperfect execution or a mistake at any stage can have negative consequences for subsequent stages. Despite the continuous improvement of project management approaches, several challenges remain, largely due to the influence of the human factor. These challenges include ineffective communication, vague or inaccurate tasking, incorrect prioritisation, the use of unrepresentative data samples for decision-making, and decision-making based solely on personal experience or subjective expert opinions without considering business data analytics. Researchers also identified structured groups of risks that exacerbate these difficulties: project complexity, contractual risks, financial risks, legal factors, uncertainty about project requirements and scope, and planning risks (Taherdoost & Keshavarzsaleh, 2016). To reduce the negative impact of such risks, it is advisable to introduce a systematic approach to project management, which involves organising activities based on clearly defined business processes (Bashynska & Khristova, 2017).

An efficient solution in this area is the PMMM, which is used as a roadmap for the sustainable, systematic and predictable development of management processes. Such models can be used for assessment of the current level of development of the project management system at an enterprise, identifying ways to improve its components, and providing access to best practices tested by leading organisations. The most used models are OPM3 (Miller, 2004), PMMM (Samolovac, 2022), and P2MM (PRINCE2 Maturity Model, n.d.), which differ in structure and approaches to assessing the maturity of project management processes. The OPM3 model, developed by the Project Management Institute, unlike other models, does not divide processes into maturity levels, but instead focuses on the relationship between projects, programmes, and portfolios within

an organisation. It can be used to assess how effectively an organisation achieves its strategic goals through project management. The PMMM model has five levels of maturity from initial to optimised and covers ten functional areas of project management, making it convenient for phased implementation of changes and strategic development. The P2MM model, based on the PRINCE2 methodology, combines management aspects with process control, which improves adaptation accuracy of the management system to the specific needs of projects. All these models identify key components of project management that may differ in name or structure but generally boil down to similar functions. For example, in the PMMM model, procurement and cost management are considered separate components, while the P2MM model combines these areas into one component – financial management. Given the objective of this study, which emphasises the analysis of the potential of AI in project management, it is advisable to use the PMMM model, as it can be used for a more structured comparison of the functionality of intelligent solutions.

To further analyse the application of AI in project management, the tools were divided into four types depending on their level of complexity: integration and automation, virtual assistants and chatbots, machine learning-based systems, and fully autonomous project management solutions. The first type of tools automates routine tasks, including status updates, sending reminders, maintaining to-do lists, etc. (Lahmann, 2018). The second type includes virtual assistants and chatbots that help users set tasks, generate texts, and communicate. The third type consists of tools based on machine learning algorithms: they analyse large amounts of data, identify patterns, predict risks, and make recommendations on resource allocation and priorities (Ruiz et al., 2020). The fourth type includes complex autonomous systems that can make management decisions on their own, based on current data and context, reducing the need for human intervention (Bachynskyi, 2024). It should be noted that most platforms are not limited to just one of these types. For example, Smartsheet cloud-based project management software combines task automation (type one) with text generation based on user activity history, indicating the use of machine learning (type three). Another example is Taskade, a set of project management tools that includes organisational task automation and a built-in chatbot for generating and analysing information, combining the first and second types, respectively.

AI tools from the integration and automation group standardise and automate routine project management tasks and aggregate data from internal information systems to form a representative sample for informed decision-making. Typical scenarios for using such tools include sending reminders to managers or executors when a task deadline is approaching, automatically generating and distributing reports on the status of tasks, and creating template tasks and descriptions for them. The use of such tools reduces the cost of repetitive operations and increases the efficiency of standard project management procedures. Notably, some of these tools do not function as standalone products but as elements of larger systems or require integration with other data sources.

One example is the Butler extension for the Trello platform, which can be used to set up automatic triggers

and actions that are performed in response to certain events in the system, significantly reducing the time spent on routine operations and minimising the human factor. The Wrike system provides functionality for monitoring task progress, optimising resource utilisation, and visualising performance indicators, using AI algorithms to automatically create and edit task descriptions. Monday work management functions as a multifunctional platform for project management support, including structure building, status monitoring, report generation, and automatic text completion. Smartsheet provides flexible automation and scalability of management using tables, boards, templates, formulas, and analytical reports. Microsoft Power Automate focuses on creating conditional action flows with the ability to synchronise with Project, Outlook, and Power Business Intelligence (BI). Taskade integrates process automation, task visualisation, and a chatbot that processes text queries, analyses documents, and generates responses (Chandra, 2024). Timely specialises in automatic time tracking and workload analysis, integrating with Asana, Trello, and Jira to structure information and generate reports in real time. Thus, chatbot assistants are increasingly being integrated into project management processes, providing users with new tools for analytics, text generation, communication, and automation. According to a forecast by research company Gartner, by 2027, chatbots will be used as the primary customer service channel in at least 25% of companies (Gartner predicts chatbots..., 2022). This demonstrates the relevance and potential of such tools in the field of project management.

Project management remains a complex area where traditional methods do not always effectively address the challenges posed by human factors and structural risks. The use of management maturity models such as OPM3, PMMM and P2MM helps to systematise processes and

identify areas for improvement. The integration of AI tools, from automating routine tasks to autonomous decision-making, creates new opportunities for efficiency.

Chatbot assistants and intelligent platforms in project management

The use of chatbots, virtual assistants, and intelligent platforms based on AI technologies is transforming project management, increasing its flexibility, automation, and adaptability. They can be used to respond quickly to changing conditions, optimise resources, minimise risks, and improve the efficiency of internal communication. By integrating such tools with digital environments (planning, communication, and analytics systems), organisations can significantly accelerate the implementation of tasks and make informed decisions in real time. Depending on the functional purpose and the level of integration with other systems, chatbots can perform a wide range of tasks, including informing about the status of current tasks, generating project documentation, identifying potential contradictions in requirements, and analysing data.

One example of the commercial use of AI chatbots is H&M's bot integrated into the Kik messenger, which has over 300 million users. This bot asked customers questions to identify their style preferences and showed them clothing options in the form of images, simplifying the selection process. In addition, it was used to demonstrate ready-made outfits, vote for them, and engage in interactive discussions, which personalised the brand experience and increased customer loyalty (Conversational AI..., 2021), or the Ukrainian mobile operator Kyivstar (n.d.), which uses the chatbot Zoriana to provide tariff advice. Below is a comparative description of chatbot assistants that can be effectively used for project management tasks (Table 1).

Table 1. Examples of chatbot assistants and scenarios of their use in project management

Tool name	Main functions	Features of integration/purpose
ChatGPT	Answer generation, text analysis, documentation, risk identification	Ability to integrate with project management systems to improve input data
Gemini (ex-Bard)	Similar functions to ChatGPT; report generation, risk identification, and visualisation	Integration with Asana, Trello, Jira, Monday.com
IBM Watson Assistant	Improving customer experience, analytics, and decision support	Customer-focused, but applied to internal project management processes
Jasper	Formulation of tasks, project documentation, letters, and presentations	Priority on textual content and marketing, but effective for project documentation
ClickUp AI Assistant	Automatic creation of tasks, generation of documents based on a template	Deep integration with ClickUp
Fireflies.ai	Transcribing meetings, generating structured reports	Accurate communications, mitigation of loss of claims

Source: compiled by the author

The analysis in Table 1 shows that chatbot assistants significantly expand the project management toolkit, automating key processes, improving decision-making, and enhancing communication. An illustrative example of the effective use of ChatGPT in this context is the case of Duolingo, which integrated the GPT-4 model into its learning application to personalise the user experience. By the implementation of Duolingo Max features, users are able to receive detailed explanations of their answers in a natural language format that simulates individual tutoring. In

addition, tools have been implemented to simulate role-playing dialogues with virtual characters that have unique communication scenarios. This experience confirms the potential of GPT platforms to provide flexible user support, particularly in environments where individualised learning, adaptive assistance, or real-time solutions to atypical problems are required (Marr, 2023).

Jasper can be used to formalise tasks and project documentation following predefined formats, which ensures structured and unified project materials. The successful use of this platform has been demonstrated by Webster First Federal Credit Union (n.d.), where Jasper has become central in the marketing infrastructure, contributing to a nine-fold increase in organic traffic through consistent content, improving search engine optimisation, accelerating A/B testing of advertising campaigns, and ensuring brand consistency through the Brand Voice feature, which is critical in the financial services industry. This scaled the small team without increasing headcount, while maintaining high quality and trusted content (How first Webster Federal Credit Union..., n.d.).

ClickUp AI Assistant, as an integrated tool, automates the process of creating tasks and documentation within the respective management platform, reducing the time required to perform routine actions. An example of the effective implementation of this technology is Lulu Press (n.d.), which replaced two previous project management systems (Jira and Basecamp) with a single ClickUp platform with more than 100 employees. Due to the automation functionality and integration with GitLab, the company managed to eliminate duplication of tasks and significantly reduce the time for manual status updates. This increased work efficiency by 12%, accelerated product development and marketing campaigns. In addition, the implementation of ClickUp has standardised the processes of creating training videos, webinars, guides, and other materials within the Lulu University series, which has improved collaboration between teams and ensured transparency in the implementation of each stage of projects (Lulu furthers..., n.d.).

In turn, Fireflies.ai improves the efficiency of project communications through automated meeting protocols, which minimise information loss and improve the tracking of decisions and agreements. A notable example of the effective implementation of this tool is the use of Fireflies. ai by Moonfrog Labs (n.d.), a mobile game developer with an active user base in India and neighbouring countries. After switching to a remote format, the company's team faced problems with loss of concentration due to the need for manual note-taking and frequent omissions of relevant details in communication. Integration of Fireflies.ai, which automatically records, transcribes, and structures meetings, eliminated the need for a separate note-taker, reduced the number of missed tasks, increased productivity, and ensured that all participants were actively involved in the discussion. Using AI filters and the automatic identification of action items, the tool also improved collaboration and accelerated decision-making in teamwork (Kulshreshtha, 2021). The introduction of such chatbots not only increased productivity in project management but also created additional value in terms of shaping the digital environment of project activities.

AI tools based on machine learning technologies are being actively implemented in project management to improve the efficiency of planning, risk forecasting, and resource allocation. They can be used for predictive analysis that generates real-time recommendations for the user based on previous project experience. As noted by V. Samolovac (2022), the source of input data for such systems can be indicators of time spent on tasks in previous projects, associated risks, and information about the dependencies between individual tasks. This makes it

possible to build alternative project plans, identify critical points, model task chains, and identify potential risks in real time.

One example of such solutions is the Asana platform, which provides comprehensive project management functionality, including automation of routine processes, task monitoring, and report generation. Based on AI tools, Asana can be used to create tasks based on the analysis of similar previous tasks, predict their completion dates, identify risks, make recommendations for resource allocation, and respond to project participants' requests for the current status of work (Asana unveils new..., 2023). The introduction of Asana into the activities of Kenshoo Skai (n.d.), an omnichannel marketing platform, occurred during the period of customer growth in the context of the pandemic and was designed for centralisation of project management. By using Asana, the customer service team managed to centralise project management, standardise customer service, and integrate workflows with Zendesk, Slack, Zoom, and internal systems, which was used by managers to serve three times as many customers without losing quality. The solution has significantly reduced the time spent searching for information, synchronised activities between departments, and increased the effectiveness of teamwork in remote work (Skai's retail media..., n.d.).

The Zoho Projects platform is also a complete project management solution that covers all stages of the project lifecycle. It predicts the amount of resources and time required to complete tasks based on historical data analysis, which provides a more informed approach to managing team workload. In addition, the system includes a built-in chatbot called Zia, which acts as a virtual assistant, providing information on the status of tasks, creating new tasks, and editing them according to current needs. An example of an effective implementation of this tool is the experience of Sgurr Energy (n.d.), a leading renewable energy engineering consultancy that faced difficulties in project management due to fragmented systems, manual processes, and inefficient task tracking. By integrating Zoho Projects into its overall digital solutions ecosystem (along with Zoho Customer Relationship Management (CRM), Zoho Books, and Zoho Analytics), the company was able to centralise project planning, monitoring, and collaboration. This has resulted in better resource management, timely invoicing, automated reporting, and increased overall productivity. Zoho Analytics was used to receive reports on profitability and team utilisation, which significantly improved the quality of management decision-making. This integration has provided the company with process transparency, increased team efficiency, and reduced financial delays associated with project activities.

Another example is the Forecast platform, which, similarly to Taskade, is positioned as an AI-based solution for project management. It includes functionality for budget control, resource management, automated reporting and invoicing. A feature of Forecast is the ability to automatically generate tasks, allocate resources, and identify risks at an early stage, which significantly increases the adaptability of management decisions (Viter, 2020). The development of machine learning technologies has resulted in the concept of autonomous project management, which

provides for the possibility of implementing projects without direct human involvement or with minimal human intervention. According to this concept, AI systems should function as a project manager, automating the full cycle of management processes from initiation to completion. However, fully autonomous project management systems have not yet been created. It is only known that Taskade AI is developing such a system, but there are currently no commercially available solutions of this level (Bednarski, 2023). An analysis of AI tools in project management has shown their ability to automate routine processes, improve planning efficiency, and optimise resource use. Machine learning-based systems provided predictive analytics, and chatbot assistants supported communication and documentation generation. Despite the progress, fully-fledged autonomous control systems remain at the conceptual stage of development.

Prospects for the development and integration of AI into project management

In the context of active digital transformation and growing competition, Ukrainian businesses should consider the introduction of AI as a strategic tool to improve project management efficiency. AI technologies help optimise management processes, improve forecast accuracy, reduce time spent on routine operations, and create a new culture of data-driven decision-making. Processing large volumes of information in real time can be used to create project strategies based on analytics rather than assumptions. However, the expansion of access to AI tools is accompanied by difficulties in integrating them into existing management systems, the need to update IT infrastructure, comply with ethical data processing standards, and train a new generation of specialists. To assess the feasibility of using AI in project management, a SWOT analysis was developed (Table 2).

Table 2. SWOT analysis of AI integration into project management

Strengths	Weaknesses	
Automate repetitive tasks and processes. Increase the accuracy of timing and cost forecasting. Improve risk management through analytics. Ability to adapt to changes in the environment in real time. Centralised access to project information and knowledge.	High costs of AI technology implementation. Limited staff competence in the use of AI. Dependence on the quality and completeness of input data. Difficulties with integrating AI into existing management systems. Risks of reduced trust due to lack of transparency in algorithms.	
Opportunities	Threats	
Opportunities Expansion of the use of AI for project portfolio management. Integration with other digital platforms (Enterprise Resource Planning (ERP), CRM, BI). Use of generative AI to create documentation. Development of AI-based decision support systems. Application of AI to assess performance and team dynamics.	Threats Rapid development of technology, which complicates long-term planning. The threat of losing control over critical decision-making. Legal restrictions on data collection, storage and use. Growing cyber threats and vulnerabilities in AI systems. Ethical challenges in the use of personal data in modelling.	

Source: compiled by the author based on M.Z. Nabeel (2024), M. Al-Arafat et al. (2025), M.L. Prasetyo et al. (2025)

In the context of intense digital transformation and an increasingly competitive environment, Ukrainian businesses should consider the integration of AI as one of the key strategic tools to improve project management efficiency. The use of AI technologies can significantly optimise management processes, improve forecasting accuracy, reduce time spent on routine tasks, and develop new approaches to data-driven decision-making. Incorporating the results of the SWOT analysis, the prospects for the development of AI in project management require the development of comprehensive management recommendations designed for both internal modernisation of business processes and external adaptation to global technological challenges.

The first step in implementing AI in a project management system should be to audit current processes and identify critical areas where the use of intelligent technologies can have the greatest impact. These areas include planning automation, budgeting, risk management, performance monitoring, and communication between project team members. Based on the results of such an analysis, it is advisable to develop a step-by-step integration strategy, incorporating the size of the enterprise, the availability of technological resources, and industry specifics. As an initial step, it is recommended to introduce local tools, such as chatbots, AI scheduling modules, and task management systems with machine learning elements (Hashimzai & Mohammadi, 2024). The second area is staff training to

work with innovative technologies. Without proper qualifications, the introduction of AI may be ineffective or not used in practice at all. Therefore, businesses should invest in the training of management and technical staff, prioritising the development of digital literacy, basics of AI, the principles of the use of machine learning platforms, and the formation of strategic thinking adapted to the requirements of the digital economy. Particularly effective is the formation of multidisciplinary teams that combine IT experts, analysts, and managers who can work together to adapt algorithms to the specifics of the business environment (Rodgers *et al.*, 2023).

Integrating AI into an enterprise's existing IT architecture requires careful planning. To prevent data fragmentation, system outages, and loss of consistency in information flows, it is advisable to use platforms with an open application programming interface and a high level of compatibility with existing CRM, enterprise resource planning, and project management systems. Flexible cloud solutions can be used to adapt the system configuration to the needs of the enterprise without the need for a complete modernisation of the information infrastructure. After that, a substantial step is to implement policies for the ethical and responsible use of AI technologies. This is especially necessary for businesses that handle personal or sensitive data (e.g., in the healthcare, banking, or insurance sectors). Businesses should ensure transparency in the use

of algorithms, avoid biased decisions caused by model training, and implement backward control mechanisms. Among such tools, human-in-the-loop models should be highlighted, which retain the right to make the final management decision. This will help build trust in technology on the part of employees and external stakeholders (Brodny & Tutak, 2025).

Given the limited financial capacity of most Ukrainian businesses during the war and recovery period, it is advisable to attract external support for the implementation of digital projects. This includes participation in international donor programmes that finance digital initiatives for small and medium-sized businesses, as well as cooperation with Ukrainian IT companies that create specialised solutions based on AI. Additional support can be obtained through participation in government initiatives such as Diia. Business (n.d.) or the Digital Strategy (Resolution of the Cabinet of Ministers of Ukraine No. 1351-2024-r, 2024). One example of digital adaptation in a resource-constrained environment is Ajax Systems (n.d.), which develops security systems using AI. In the difficult conditions of wartime, it not only maintained full operations in Ukraine but also continued to implement AI solutions for automatic threat detection and maintenance forecasting. Such initiatives demonstrate an example of a strategic rethinking of management and production processes using the latest technologies (New notifications..., 2024).

Another successful case is Nova Poshta (n.d.), which in 2024 introduced a service for automating the processing of international shipments. The technology has reduced the processing time for one shipment from two minutes to 1.5 hours to 20 seconds. The system automatically collects and verifies data, integrates with directories of prohibited goods, and costs only 0.12 UAH per request. This increased efficiency, reduced costs, and minimised the risk of violating customs requirements (Stark, 2024). Another example of the effective use of AI in the field of information management is Liga:Zakon (n.d.), which has developed the LIGA360 platform. Its functionality is based on analytical tools with elements of AI, which can be used for automation of monitoring of changes in legislation, analysis of court practice, and assessment of legal risks in real time. This is especially relevant for small and medium-sized businesses seeking to effectively adapt to dynamic changes in the legal environment (Liga:Zakon has developed..., 2020).

Another component of the AI implementation strategy is to conduct a business case for the planned innovations. Before launching each project, it is necessary to estimate the expected return on investment, formulate performance indicators, which may include reducing time spent on routine tasks, shortening project implementation time, reducing the error rate, increasing customer satisfaction, and improving internal process transparency. Thus, AI technologies should not only reduce the operational burden but also create added value, which is reflected in the strategic development of the enterprise. In general, a systematic approach to the introduction of AI in project management involves the implementation of several interrelated stages (Hajipour *et al.*, 2023).

As a result, the successful implementation of these management solutions can be used by Ukrainian enterprises not only to automate certain elements of project management but also to create a new quality of management based on intelligent data processing and increased flexibility of management decisions. Such an approach will increase resilience to external challenges, strengthen the competitiveness of enterprises, and contribute to an overall increase in the efficiency of economic activity. In the long run, AI will become an integral part of the management culture of Ukrainian businesses.

DISCUSSION

In the context of digital transformation, the use of AI has changed approaches to project management at both the strategic and operational levels. Its implementation ensured the automation of routine tasks, improved planning accuracy, reduced the impact of the human factor, and optimised resource allocation. AI tools contributed to the adaptability of management systems to changes in the external environment, increased transparency of processes and provides prompt response to challenges. At the same time, the ability to process large amounts of data in real time provided more accurate forecasting of project timelines, budgets, and quality, which strengthened companies' ability to make informed decisions and act proactively.

The study correlated with the approach proposed by D. Vergara et al. (2025) in interpreting AI as an effective tool for transforming project management. Both studies addressed the automation of routine processes, the use of machine learning algorithms for data analysis, risk assessment, and optimisation of resource allocation. The study also shared a common focus on the challenges of implementing AI, from technical complexity to ethical barriers and growing demands on managers' digital competencies. At the same time, the study by D. Vergara et al. was mainly a review and theoretical study that included bibliometric analysis of publications, classification of neural network architectures, and identification of scientific trends. In contrast, this study was distinguished by its applied focus, the construction of a typology of tools by level of complexity, and a functional analysis of platforms already implemented in business practice.

A logical extension of this comparison is the study by J.K. Das et al. (2025), which also recognised the potential of AI to improve project management efficiency. Both papers emphasised the role of automation in reducing the impact of human error, accelerating decision-making, and increasing the accuracy of estimates. They also recognised barriers to implementation, including organisational, technical and ethical factors. However, the study by J.K. Das et al. focused mainly on conceptual foundations, including the development of a model for integrating cognitive AI, with an emphasis on the behavioural aspects of management. The study offered a practical analysis of the functionality of existing tools, such as Smartsheet, ClickUp, Zoho Projects, and Taskade, which assessed the real impact of technology on modern project environments. Common positions were also traced in the work of N. Haefner et al. (2021), which emphasised the importance of AI for the transformation of organisations in the digital environment. Both studies agreed on the need to rethink management processes and develop new competencies. At the same time, the study by N. Haefner et al. addressed the strategic level, in particular on the role of CIOs in the digital transformation of companies, while the present study examined in detail the specific tools already in use to automate tasks, coordinate teams, and increase productivity in project management.

A similar study was conducted by J. Silva et al. (2024), which considered AI in the context of Industry 5.0 as a technology that ensures a symbiosis between human potential and digital platforms. Both studies emphasised the importance of integrating AI into digital governance environments, increasing the role of data analytics, and improving inter-team coordination. However, J. Silva et al. examined the technical architecture, principles of cognitive interaction, and areas of development within robotic automation, while the study focused on the applied aspect of assessing the effectiveness of the functionality of platforms already used in business processes. Another vector of analysis was proposed by S. Salimimoghadam et al. (2025), which highlighted models of AI implementation in project management through the prism of life cycle optimisation. The study developed a structured conceptual model of AI integration with a distinction between the stages of planning, execution, monitoring, and evaluation. The study did not build universal models but provided a practical analysis of which tools ensure accurate forecasting, reduce human error, and better adaptation to a rapidly changing environment. A comparison with the study by A.M. Felicetti et al. (2024) was also relevant, where AI was analysed as a tool for optimising agile methodologies, digital work environments, and self-managed teams. Both studies focused on AI's ability to reduce the impact of human error, improve the accuracy of calculations, and adapt to changing conditions. The study, although not exclusively on agile, confirmed the importance of flexibility of systems and technologies in digital governance, exploring tools that provide such flexibility regardless of the chosen methodology.

R. Yadav (2024) focused on a strategic vision of the transformation of project management under the influence of AI. The study considered AI as a factor in the formation of new models of corporate governance, also raising issues of ethics, technology dependence, and privacy threats. The study instead assessed the application of the platforms and their impact on the efficiency of project tasks. Both approaches coincided in their conclusions about the change in management logic from reactive to proactive and the need to adapt management practices but differed in the level of detail: R. Yadav worked at the macro level, and this study is at the operational level of implementation. The analysis by M.E. Nenni et al. (2025) had a similar strategic perspective, where AI was studied in the context of the transition to the Industry 5.0 paradigm. The focus was on the changing role of the manager, cognitive automation, and the need for new models of adaptive control. This study continued this logic, but with a focus on the everyday use of digital tools, reducing the influence of the human factor, and the prompt implementation of tasks in the digital environment.

M. Salimi (2024) addressed the impact of AI on the project lifecycle, with a particular focus on risk prediction, data processing, and structural changes in teams. These aspects were also reflected in the study, in particular in the use of ClickUp and Taskade platforms that provide integrated support for the planning, implementation, and monitoring stages. Both approaches were based on the thesis of the need for digital adaptation of teams, but M. Salimi

remained in the theoretical plane, while the study outlined specific examples of practical implementation. R. Parekh & O. Mitchell (2024) addressed cloud solutions, ethical challenges, and the potential of AI to provide flexibility in management. Both studies acknowledged that AI tools are transforming the approach to management, but R. Parekh & O. Mitchell highlighted potential risks and strategic rationale for change, while the study demonstrated the applied implementation in the form of platforms that already ensure productive work of teams and increase transparency of processes. To conclude the comparative analysis, it is worth mentioning the study by S. Georgiev et al. (2024), in which AI was considered as an element of strategic management aimed for forecasting, decision support, and reducing uncertainty. This study complemented this vision with a tool-level demonstration, demonstrating how the functionality of Smartsheet, Zoho, or ClickUp platforms contributes to the achievement of the stated strategic goals in real business conditions.

The use of AI in project management has significantly transformed traditional approaches to planning, controlling, and implementing tasks. Its implementation has automated routine operations, improved the accuracy of risk forecasting, allocated resources more efficiently, and adapted to changing conditions. This minimised the impact of the human factor, accelerated decision-making, and increased the overall efficiency of project activities. As a result, AI has become not only an auxiliary tool but also a key factor in the transformation of modern project management.

CONCLUSIONS

The study summarised the functionality of AI tools used to support project management in the business environment. The analysis showed that the introduction of AI systems could significantly optimise key project management processes, including planning, monitoring, risk assessment, communication, and project documentation. The study determined that the most effective tools were those that combined the automation of routine tasks with the functions of predictive analytics and real-time management decision support. The study identified four main types of AI solutions: integration and automation systems, chatbots and assistants, machine learning tools, and autonomous systems. Most modern platforms, such as Smartsheet, ClickUp, Taskade, Asana, and Zoho Projects, combine several levels of functionality at once, which can be used in adaptation to the specifics of the tasks and scale of the organisation.

The experience of practical application of AI in project management has shown that the use of such solutions reduced the influence of the human factor, increased the accuracy of estimates, reduced the cost of performing repetitive operations, and provided analytical support to managers. In particular, the case of Asana implementation at Kenshoo Skai demonstrated a threefold increase in the efficiency of customer service managers without losing the quality of service. After switching to ClickUp, Lulu Press reduced manual status updates and increased productivity by 12%, while the implementation of Fireflies.ai at Moonfrog Labs eliminated information loss, increased engagement in communication processes, and improved compliance with agreements. Webster First Federal Credit Union's Jasper

platform helped drive a nine-fold increase in organic traffic through automated content creation, while Zoho Projects' tools helped Sgurr Energy centralise planning and automate reporting, which improved resource management and accelerated billing.

The SWOT analysis conducted as part of the study identified key advantages (forecasting, automation, adaptability), weaknesses (high cost, lack of digital skills), opportunities (integration with ERP, CRM, BI systems), and threats (cyber risks, ethical dilemmas, lack of transparency of algorithms). This made it possible to form a strategic vision for the development of AI tools in project management and identify areas for their rational implementation, incorporating current challenges. The use of intelligent tools in Ukrainian companies has demonstrated the ability to adapt modern technologies even with limited financial and technical resources. Ajax Systems, Nova Poshta, and Liga:Zakon have successfully implemented digitalisation strategies with AI elements, which were used for strategic flexibility, faster processing of requests, increased employee productivity, and more accurate accounting. Such examples have proven that even in difficult conditions, innovation is possible and effective if internal processes are properly organised and result-oriented.

Overall, the study confirmed that the systematic use of AI contributed to the formation of a new management paradigm based on an analytical approach, flexibility, prompt decision-making, and digital awareness. In the long term, smart technologies have the potential to become crucial for ensuring business competitiveness, especially in a highly volatile environment. Further research could be aimed to expand the empirical base by quantifying the impact of certain types of AI on managerial performance indicators, as well as developing industry-specific models for integrating AI, incorporating the specifics of business processes.

ACKNOWLEDGEMENTS

None.

FUNDING

None.

CONFLICT OF INTEREST

None.

REFERENCES

- [1] Ajax Systems. (n.d.). Retrieved from https://ajax.systems/.
- [2] Al-Arafat, M., Kabir, M.E., Morshed, A., & Islam, M.M. (2025). Artificial intelligence in project management: Balancing automation and human judgment. *Frontiers in Applied Engineering and Technology*, 2(1), 18-29. doi: 10.70937/faet. v1i02.47.
- [3] Asana unveils new AI innovations to help every organization work smarter. (2023). Retrieved from https://investors.asana.com/news-releases/news-release-details/asana-unveils-new-ai-innovations-help-every-organization-work.
- [4] Azarova, I.B., & Bezverkhniuk, T.M. (2024). Application of generative artificial intelligence models in project management practice. *Visnyk of Kherson National Technical University*, 4(91), 11-17. doi: 10.35546/kntu2078-4481.2024.4.1.
- [5] Babichev, A., Negliad, A., & Samorodov, B. (2024). Modern technologies and artificial intelligence as factors of modernization of innovative development of business structures. *Ukrainian Journal of Applied Economics and Technology*, 9(4), 260-268. doi: 10.36887/2415-8453-2024-4-39.
- [6] Bachynskyi, O. (2024). Using artificial intelligence as a tool for project management. *Economy and Society*, 61. doi: 10.32782/2524-0072/2024-61-18.
- [7] Bashynska, I.O., & Khristova, A.V. (2017). The use of modern information technologies in project management. *Economic Journal of Odessa Polytechnic University*, 1(1), 16-22.
- [8] Bednarski, D. (2023). What are multi-agent systems? Building your AI autonomous team. Retrieved from https://www.taskade.com/blog/multi-agent-systems/.
- [9] Bolkvadze, N., Bratko, O., & Myhal, O. (2023). Implementation of artificial intelligence in the company's business activities. *Economy and Society*, 58. doi: 10.32782/2524-0072/2023-58-81.
- [10] Brodny, J., & Tutak, M. (2025). Stakeholder interactions and ethical imperatives in big data and AI development. *Journal of Open Innovation: Technology, Market, and Complexity*, 11(1), article number 100491. doi: 10.1016/j.joitmc.2025.100491.
- [11] Chandra, D. (2024). *Taskade review 2024: Best project management tool?* Retrieved from https://theprocesshacker.com/blog/taskade-review/.
- [12] Conversational AI in eCommerce: 9 of the most successful chatbot examples. (2021). Retrieved from https://surl.lu/rtpdgh.
- [13] Das, J.K., Elegbe, I., Coffie, L., Khadka, R., Chen, L., & Ji, Y. (2025). AI-powered IT project management: Analyzing effectiveness of advanced tools. In *SoutheastCon 2025* (pp. 1554-1559). Concord: Institute of Electrical and Electronics Engineers. doi: 10.1109/SoutheastCon56624.2025.10971718.
- [14] Diia.Business. (n.d.). Retrieved from https://business.diia.gov.ua/.
- [15] Felicetti, A.M., Cimino, A., Mazzoleni, A., & Ammirato, S. (2024). Artificial intelligence and project management: An empirical investigation on the appropriation of generative chatbots by project managers. *Journal of Innovation & Knowledge*, 9(3), article number 100545. doi: 10.1016/j.jik.2024.100545.
- [16] Gartner predicts chatbots will become a primary customer service channel within five years. (2022). Retrieved from https://surl.li/tkpshu.
- [17] Georgiev, S., Polychronakis, Y., Sapountzis, S., & Polychronakis, N. (2024). AI in project management: A supply chain perspective. *Supply Chain Forum: An International Journal*. doi: 10.1080/16258312.2024.2384823.

- [18] Gudakov, D., & Kolodinska, Y. (2025). The application of artificial intelligence for managing human centred project of information technologies. *Measuring and Computing Devices in Technological Processes*, 1, 122-129. doi: 10.31891/2219-9365-2025-81-15.
- [19] Haefner, N., Wincent, J., Parida, V., & Gassmann, O. (2021). Artificial intelligence and innovation management: A review, framework, and research agenda. *Technological Forecasting and Social Change*, 162, article number 120392. doi: 10.1016/j.techfore.2020.120392.
- [20] Hajipour, V., Hekmat, S., & Amini, M. (2023). A value-oriented artificial intelligence-as-a-service business plan using integrated tools and services. *Decision Analytics Journal*, 8, article number 100302. doi: 10.1016/j.dajour.2023.100302.
- [21] Hashimzai, I.A., & Mohammadi, M.Q. (2024). The integration of artificial intelligence in project management: A systematic literature review of emerging trends and challenges. *TIERS Information Technology Journal*, 5(2), 153-164. doi: 10.38043/tiers.v5i2.5963.
- [22] How first Webster Federal Credit Union achieved 9X traffic growth with Jasper. (n.d.). Retrieved from https://www.jasper.ai/case-studies/webster-first-federal-credit-union.
- [23] Hrynko, Ya. (2024). Implementation of artificial intelligence technologies in the work of the sales department. *Economic Bulletin of Donbass*, 3(77), 93-101. doi: 10.12958/1817-3772-2024-3(77)-93-101.
- [24] Kenshoo Skai. (n.d.). Retrieved from https://skai.io/.
- [25] Kulshreshtha, N. (2021). *How Fireflies.ai helps Moonfrog Labs increase productivity by keeping track of action items*. Retrieved from https://fireflies.ai/blog/moonfrog-labs-case-study.
- [26] Kyivstar. (n.d.). Tariffs. Retrieved from https://kyivstar.ua/tariffs.
- [27] Lahmann, M. (2018). AI will transform project management. Are you ready? Retrieved form https://surl.li/owuskq.
- [28] Liga:Zakon has developed an anti-crisis solution for business. (2020). Retrieved from https://porady.org.ua/kompaniya-lihazakon-rozrobyla-antykryzove-rishennya-dlya-biznesu.
- [29] Liga:Zakon. (n.d.). Retrieved from https://ligazakon.net/en.
- [30] Lulu furthers its mission to empower creators with ClickUp. (n.d.). Retrieved from https://surl.li/uhexzc.
- [31] Lulu Press. (n.d.). Retrieved from https://surl.lu/jlxkiv.
- [32] Marr, B. (2023). 10 amazing real-world examples of how companies are using ChatGPT in 2023. Retrieved from https://surl.li/ipkbfg.
- [33] Miller, B. (2004). The pathway to OPM3: A busy project manager's guide to advancing organizational maturity. In *PMI® global congress 2004*. Newtown Square: Project Management Institute.
- [34] Moonfrog Labs. (n.d.). Retrieved from https://moonfroglabs.com/.
- [35] Nabeel, M.Z. (2024). AI-enhanced project management systems for optimizing resource allocation and risk mitigation: Leveraging big data analysis to predict project outcomes and improve decision-making processes in complex projects. *Asian Journal of Multidisciplinary Research & Review*, 5(5), 53-91. doi: 10.55662/AJMRR.2024.5502.
- [36] Nenni, M.E., De Felice, F., De Luca, C., & Forcina, A. (2025). How artificial intelligence will transform project management in the age of digitization: A systematic literature review. *Management Review Quarterly*, 75, 1669-1716. doi: 10.1007/s11301-024-00418-z.
- [37] New notifications on Ajax apps. AI-powered cameras now inform of object detection. (2024). Retrieved from https://ajax.systems/blog/ai-powered-cameras/.
- [38] Nova Poshta. (n.d.). Retrieved from https://novaposhta.ua/en/.
- [39] Parekh, R., & Mitchell, O. (2024). <u>Utilization of artificial intelligence in project management</u>. *International Journal of Science and Research Archive*, 13(1), 1093-1102.
- [40] Prasetyo, M.L., Peranginangin, R.A., Martinovic, N., Ichsan, M., & Wicaksono, H. (2025). Artificial intelligence in open innovation project management: A systematic literature review on technologies, applications, and integration requirements. *Journal of Open Innovation: Technology, Market, and Complexity*, 11(1), article number 100445. doi: 10.1016/j.joitmc.2024.100445.
- [41] PRINCE2 Maturity Model. (n.d.). Retrieved from https://www.prince2.com/eur/prince2-maturity-models.
- [42] Resolution of the Cabinet of Ministers of Ukraine No. 1351-2024-r "On Approval of the Strategy for the Digital Development of Innovative Activity of Ukraine for the Period Until 2030 and Approval of the Operational Plan of Measures for its Implementation in 2025-2027". (2024, December). Retrieved from https://zakon.rada.gov.ua/laws/show/1351-2024-%D1%80#Text.
- [43] Rodgers, W., Murray, J.M., Stefanidis, A., Degbey, W.Y., & Tarba, S.Y. (2023). An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. *Human Resource Management Review*, 33(1), article number 100925. doi: 10.1016/j.hrmr.2022.100925.
- [44] Ruiz, J.G., Martínez, J., & Crespo, R.G. (2020). The application of artificial intelligence in project management research: A review. *International Journal of Interactive Multimedia and Artificial Intelligence*, 6(6), 54-66. doi: 10.9781/ijimai.2020.12.003.
- [45] Salimi, M. (2024). Artificial intelligence tools in construction management. *Digital Transformation and Administration Innovation*, 2(3), 131-138. doi: 10.61838/dtai.2.3.13.
- [46] Salimimoghadam, S., Ghanbaripour, A.N., Tumpa, R.J., Rahimi, A.K., Golmoradi, M., Rashidian, S., & Skitmore, M. (2025). The rise of artificial intelligence in project management: A systematic literature review. *Buildings*, 15(7), article number 1130. doi: 10.3390/buildings15071130.
- [47] Samolovac, V. (2022). Project Management Maturity Model (PMMM) explained. Retrieved from https://surl.lu/rouwem.

- [48] Sgurr Energy. (n.d.). Retrieved from https://sgurrenergy.com/.
- [49] Silva, J., Ávila, P., Matias, J., Faria, L., Bastos, J., Ferreira, L., & Castro, H. (2024). Bibliographic review of AI applied to project management and its analysis in the context of the metalworking industry. *Procedia CIRP*, 130, 177-187. doi: 10.1016/j.procir.2024.10.073.
- [50] Skai's retail media client success team triples rep capacity with Asana. (n.d.). Retrieved from https://asana.com/case-study/skai.
- [51] Smoliak, Y., & Kholodnytska, A. (2024). Artificial intelligence in enterprise management: Transformation of the role of the manager in Industry 4.0. *Problems of Modern Transformations. Series: Economics and Management*, 11. doi: 10.54929/2786-5738-2024-11-04-12.
- [52] Snishchenko, R. (2024). Artificial intelligence as a tool for increasing the efficiency of management of insurance companies. *Scientific Bulletin of the Odessa National Economic University*, 5-6(318-319), 76-84. doi: 10.32680/2409-9260-2024-5-6-318-319-76-84.
- [53] Stark, S. (2024). *Nova Poshta implements AI for faster processing of international shipments*. Retrieved from https://theinweb.media/nova-poshta-vprovadzhuye-shi-dlya-shvydshogo-oformlennya-mizhnarodnyh-vidpravlen/.
- [54] Taherdoost, H., & Keshavarzsaleh, A. (2016). Critical factors that lead to projects' success/failure in global marketplace. *Procedia Technology*, 22, 1066-1075. doi: 10.1016/j.protcy.2016.01.151.
- [55] Vasylenko, V.M., & Vakalyuk, T.A. (2024). Artificial intelligence in project management: Analysis of modern research and development prospects. *Scientific Notes of Taurida National V.I. Vernadsky University. Series: Technical Sciences*, 35(74(4)), 60-67. doi: 10.32782/2663-5941/2024.4/10.
- [56] Vergara, D., del Bosque, A., Lampropoulos, G., & Fernández-Arias, P. (2025). Trends and applications of artificial intelligence in project management. *Electronics*, 14(4), article number 800. doi: 10.3390/electronics14040800.
- [57] Viter, I. (2020). How Forecast uses AI to assist your projects. Retrieved from https://surl.lu/vapptg.
- [58] Webster First Federal Credit Union. (n.d.). Retrieved from https://www.websterfirst.com/.
- [59] Yadav, R. (2024). Transforming project management with AI: Opportunities and challenges. *Open Journal of Business and Management*, 12(6), 3794-3805. doi: 10.4236/ojbm.2024.126189.

Огляд інструментів на основі штучного інтелекту для управління проєктами для представників бізнесу

Олександр Бєляєв

Аспірант Державний біотехнологічний університет 61002, вул. Алчевських, 44, м. Харків, Україна https://orcid.org/0000-0003-0212-8895

Анотація. Метою даного дослідження було виявлення ефективних інструментів штучного інтелекту, здатних забезпечити підвищення продуктивності, точності та гнучкості управлінських процесів у сфері проєктного менеджменту. У межах дослідження було проаналізовано функціональні можливості цифрових платформ управління проєктами та інструментів на основі штучного інтелекту, а також кейси їхнього практичного застосування в міжнародних і українських компаніях. Платформи Trello, Wrike, Monday, Microsoft Power Automate, Taskade і Timely відрізняються за рівнем автоматизації, інтеграції, візуалізації процесів і гнучкості. Наприклад, Microsoft Power Automate забезпечує налаштування автоматизованих потоків завдань, а Timely здійснює точний облік часу. Інструменти Chat Generative Pre-trained Transformer, Gemini, International Business Machines Corporation Watson Assistant, Jasper, ClickUp Artificial Intelligence Assistant i Fireflies підвищують аналітичність, дозволяють персоналізувати процеси, підтримувати природномовну взаємодію та автоматизувати рутинні завдання. Аналіз кейсів засвідчив ефективність застосування штучного інтелекту. Компанія Duolingo впровадила Chat Generative Pre-trained Transformer для адаптивного навчання, Webster First Federal Credit Union використовує Jasper для створення маркетингового контенту, Lulu Press застосовує ClickUp Artificial Intelligence Assistant для оптимізації управління завданнями, Moonfrog Labs інтегрувала Fireflies для аналізу онлайн-зустрічей. Платформа Asana, яку використовує компанія Kenshoo Skai, покращила координацію мультиканальних кампаній, а Zoho Projects у компанії Sgurr Energy підвищила контроль технічних етапів проєктів. Українські приклади також продемонстрували успішну інтеграцію інструментів штучного інтелекту. Ajax Systems впровадила відповідні рішення для моніторингу безпеки в реальному часі, Нова пошта оптимізувала логістику та клієнтську підтримку, а Ліга:Закон автоматизувала обробку правової інформації. Аналіз сильних і слабких сторін, можливостей та загроз показав, що інструменти штучного інтелекту сприяли автоматизації й аналітичності управління проєктами, хоча й вимагали значних ресурсів і спеціалізованої підготовки. Практичне значення дослідження полягає у визначенні інструментів, які можуть бути інтегровані в управлінські процеси для досягнення вищої ефективності

Ключові слова: автоматизація; чат-бот; прогноз; розподіл ресурсів; машинне навчання