Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://repository.hneu.edu.ua/handle/123456789/22262
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorKovalova K. O.-
dc.contributor.authorMisiura Ie. Iu.-
dc.date.accessioned2019-12-23T09:09:36Z-
dc.date.available2019-12-23T09:09:36Z-
dc.date.issued2019-
dc.identifier.citationKovalova K. O. Modeling and Forecasting Ukraine’s Population by Time Series Using the Matlab Econometrics Toolbox / K. O. Kovalova, Ie. Misiura // Business Inform. – Kharkiv, 2019. – № 5. – С. 98-105.ru_RU
dc.identifier.urihttp://repository.hneu.edu.ua/handle/123456789/22262-
dc.description.abstractThe article deals with modeling and forecasting the population of Ukraine by time series. It is shown that time series analysis is a complex, multicomponent econometric task which does not have a universal approach to its solution. This is due both to the diversity of methods of and approaches to time series analysis which were developed over time and to the specifics of time series data. For example, the authors of the article worked with a univariate nonstationary time series, therefore, the approaches and methods presented in the article are not recommended for time series with different properties. The article has an enormous practical value, since it discusses in detail issues of computer modeling of tasks of the kind. The carried out analysis of the literature has shown the relevance of the problems considered, among which particular attention should be paid to the choice of the ARIMA model, data visualization, and forecast accuracy.ru_RU
dc.language.isoenru_RU
dc.subjecttime seriesru_RU
dc.subjectnonstationarityru_RU
dc.subjectARIMA modelsru_RU
dc.subjectEconometrics Toolboxru_RU
dc.subjectMATLABru_RU
dc.titleModeling and Forecasting Ukraine’s Population by Time Series Using the Matlab Econometrics Toolboxru_RU
dc.typeArticleru_RU
Розташовується у зібраннях:Статті (ЕММ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Мисюра_business-inform-2019-5_0-pages-98_105.pdf1,34 MBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.