Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://repository.hneu.edu.ua/handle/123456789/35775
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorHuts V.-
dc.contributor.authorGorokhovatskyi O.-
dc.date.accessioned2025-03-31T14:33:33Z-
dc.date.available2025-03-31T14:33:33Z-
dc.date.issued2025-
dc.identifier.citationHuts V. Efficient fault detection in industrial equipment using PCA and SMOTE enhanced neural networks / V. Huts, O. Gorokhovatskyi // Системи управління, навігації та зв’язку. – 2025. - 1(79). – С. 77– 82.uk_UA
dc.identifier.urihttp://repository.hneu.edu.ua/handle/123456789/35775-
dc.description.abstractThis research addresses the challenge of fault detection in industrial equipment using high-dimensional vibration data with limited labeled examples. The goal was to develop a neural network model capable of accurately classifying measurement vectors into normal and faulty categories. The dataset consisted of 1158 samples, each with 93,752 numerical features, representing two classes: 865 normal and 293 faulty instances. A comprehensive preprocessing pipeline was employed, including standardization, dimensionality reduction using Principal Component Analysis (PCA), and Synthetic Minority Over-sampling Technique (SMOTE) for class balancing. The developed neural network achieved a baseline accuracy of 94.40% with 100 PCA components. Further experiments demonstrated that reducing the architecture and using only 50 PCA components improved accuracy to 98.81%, highlighting the effectiveness of the proposed approach. These findings emphasize the utility of combining PCA, SMOTE, and neural networks for fault detection in industrial equipment in high-dimensional, imbalanced datasets. Future research directions include exploring advanced neural network architectures, investigating the impact of PCA component count on model performance, and studying the feasibility of training effective models on synthetic data.uk_UA
dc.language.isoenuk_UA
dc.subjectfault detectionuk_UA
dc.subjectneural networksuk_UA
dc.subjectPCAuk_UA
dc.subjectSMOTEuk_UA
dc.subjectdimensionality reductionuk_UA
dc.titleEfficient fault detection in industrial equipment using PCA and SMOTE enhanced neural networksuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті студентів (ІКТ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
15.pdf414,73 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.