Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://repository.hneu.edu.ua/handle/123456789/37158
Назва: Systems and methods for solving problems
Автори: Kuklin V. M.
Shapovalova O. O.
Sirenka T. O.
Теми: artificial intelligence
GPU computing
symbolic methods
expert systems
recommender systems
computational graphs
mathematical logic
deep learning
Kolmogorov–Arnold networks
problem-solving
Дата публікації: 2025
Бібліографічний опис: Kuklin V. M. Systems and methods for solving problems / V.M. Kuklin, O.O. Shapovalova, T.O. Sirenka // Scientific thought development: Innovative technology, Computer science, Architecture and construction. Monographic series «European Science». - Karlsruhe, Germany, 2025. - Book 41. - Part 7. - Р. 119-169.
Короткий огляд (реферат): This chapter addresses the challenges of performing calculations and obtaining solutions to complex problems through the application of artificial intelligence. Initially, methods employing algorithms optimized for execution on graphics processing units (GPUs) are examined, demonstrating their efficiency in solving tasks where the evolution of processes and outcomes is explicitly defined, particularly for integrated problems characterized by a unique solution. Furthermore, symbolic approaches based on formal logic are analyzed, with emphasis on their role in the development of expert and recommender systems. The concept of computational graphs grounded in mathematical logic is also explored as a means of problem representation and reasoning. Special attention is devoted to connectionist models, including advanced neural architectures such as deep learning networks and Kolmogorov–Arnold networks, highlighting their potential in addressing high-dimensional and nonlinear tasks. The chapter concludes with illustrative examples that showcase the practical applicability and effectiveness of these models in solving real-world problems.
URI (Уніфікований ідентифікатор ресурсу): https://repository.hneu.edu.ua/handle/123456789/37158
Розташовується у зібраннях:Монографії (КІТ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
download.pdf1,89 MBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.