Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://repository.hneu.edu.ua/handle/123456789/37349
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorKorablyov M.-
dc.contributor.authorDykyi S.-
dc.contributor.authorFomichov O.-
dc.contributor.authorKobzev I.-
dc.date.accessioned2025-10-05T19:28:36Z-
dc.date.available2025-10-05T19:28:36Z-
dc.date.issued2025-
dc.identifier.citationKorablyov M. Diagnostics of children's emotional state based on intellectual multimodal analysis of drawings / M. Korablyov, S. Dykyi, O. Fomichov and other // ICST-2025: Information Control Systems & Technologies, September 24-26, 2025. - Odesa, 2025. - Pp. 42-54.uk_UA
dc.identifier.urihttps://repository.hneu.edu.ua/handle/123456789/37349-
dc.description.abstractThe emotional state of a child is a complex, multidimensional construct, reflected in the choice of color, composition, symbolic images, and strokes in the drawing, which is formed through a non-linear, chaotic creative process. Traditional psychological analysis of children's drawings relies on subjective interpretation and is not scalable for mass screening. This paper proposes a neural network multimodal hybrid model for automated emotion diagnostics, combining four complementary feature channels. The pre-trained EfficientNet-B3 neural network extracts the global context of the image; the YOLOv8 neural network determines local semantically significant objects, expanded to 55 classes on the open ESRA dataset; the color palette is described by the statistics of the HSV (Hue, Saturation, Value) space; compositional and graphic metrics encode the geometry and character of the lines. For adaptive weighting of channel contributions, a lightweight attention-fusion layer is introduced, forming a 256-dimensional combined feature vector. The final classifier based on a multilayer perceptron (MLP) matches a drawing to one of three emotional categories - "Happiness", "Anxiety/Depression", "Anger/Aggression", achieving an accuracy of 80-85% on a combined test set from Kaggle. A key benefit is the interpretable JSON report, which contains class probabilities and numerical indicators of color, composition, and detected objects. This makes the results easier to use in practice by a psychologist and increases confidence in the model.uk_UA
dc.language.isoenuk_UA
dc.subjectchildren's drawingsuk_UA
dc.subjectemotional stateuk_UA
dc.subjectdiagnosticsuk_UA
dc.subjectneural networkuk_UA
dc.subjectmultimodal modeluk_UA
dc.subjectEfficientNet-B3uk_UA
dc.subjectYOLOv8uk_UA
dc.subjectattention fuk_UA
dc.titleDiagnostics of children's emotional state based on intellectual multimodal analysis of drawingsuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті (МСТ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
...DIAGNOSTICS OF CHILDREN'S EMOTIONAL STATE BASED ON INTELLECTUAL MULTIMODAL ANA.pdf10,49 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.