Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
https://repository.hneu.edu.ua/handle/123456789/37349Повний запис метаданих
| Поле DC | Значення | Мова |
|---|---|---|
| dc.contributor.author | Korablyov M. | - |
| dc.contributor.author | Dykyi S. | - |
| dc.contributor.author | Fomichov O. | - |
| dc.contributor.author | Kobzev I. | - |
| dc.date.accessioned | 2025-10-05T19:28:36Z | - |
| dc.date.available | 2025-10-05T19:28:36Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Korablyov M. Diagnostics of children's emotional state based on intellectual multimodal analysis of drawings / M. Korablyov, S. Dykyi, O. Fomichov and other // ICST-2025: Information Control Systems & Technologies, September 24-26, 2025. - Odesa, 2025. - Pp. 42-54. | uk_UA |
| dc.identifier.uri | https://repository.hneu.edu.ua/handle/123456789/37349 | - |
| dc.description.abstract | The emotional state of a child is a complex, multidimensional construct, reflected in the choice of color, composition, symbolic images, and strokes in the drawing, which is formed through a non-linear, chaotic creative process. Traditional psychological analysis of children's drawings relies on subjective interpretation and is not scalable for mass screening. This paper proposes a neural network multimodal hybrid model for automated emotion diagnostics, combining four complementary feature channels. The pre-trained EfficientNet-B3 neural network extracts the global context of the image; the YOLOv8 neural network determines local semantically significant objects, expanded to 55 classes on the open ESRA dataset; the color palette is described by the statistics of the HSV (Hue, Saturation, Value) space; compositional and graphic metrics encode the geometry and character of the lines. For adaptive weighting of channel contributions, a lightweight attention-fusion layer is introduced, forming a 256-dimensional combined feature vector. The final classifier based on a multilayer perceptron (MLP) matches a drawing to one of three emotional categories - "Happiness", "Anxiety/Depression", "Anger/Aggression", achieving an accuracy of 80-85% on a combined test set from Kaggle. A key benefit is the interpretable JSON report, which contains class probabilities and numerical indicators of color, composition, and detected objects. This makes the results easier to use in practice by a psychologist and increases confidence in the model. | uk_UA |
| dc.language.iso | en | uk_UA |
| dc.subject | children's drawings | uk_UA |
| dc.subject | emotional state | uk_UA |
| dc.subject | diagnostics | uk_UA |
| dc.subject | neural network | uk_UA |
| dc.subject | multimodal model | uk_UA |
| dc.subject | EfficientNet-B3 | uk_UA |
| dc.subject | YOLOv8 | uk_UA |
| dc.subject | attention f | uk_UA |
| dc.title | Diagnostics of children's emotional state based on intellectual multimodal analysis of drawings | uk_UA |
| dc.type | Article | uk_UA |
| Розташовується у зібраннях: | Статті (МСТ) | |
Файли цього матеріалу:
| Файл | Опис | Розмір | Формат | |
|---|---|---|---|---|
| ...DIAGNOSTICS OF CHILDREN'S EMOTIONAL STATE BASED ON INTELLECTUAL MULTIMODAL ANA.pdf | 10,49 kB | Adobe PDF | Переглянути/відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.