Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://repository.hneu.edu.ua/handle/123456789/33220
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorСенчуков В. Ф.-
dc.date.accessioned2024-07-23T08:15:11Z-
dc.date.available2024-07-23T08:15:11Z-
dc.date.issued2018-
dc.identifier.citationСенчуков В. Ф. Послідовнісна модель булевої алгебри та деякі її застосування / В. Ф. Сенчуков // Економіка розвитку. – № 1 (85). – С. 93-99.ru_RU
dc.identifier.urihttp://repository.hneu.edu.ua/handle/123456789/33220-
dc.description.abstractЗапропоновано конструктивний підхід до вирішення проблеми впровадження формальної логіки в побудову математичних моделей, пов'язаних з описом дискретних множин. Метою є створення інструментарію, за допомогою якого можна було б на аналітичному рівні (у вигляді єдиної формули) описувати закономірності, яким підпорядковуються множини дискретних об'єктів. Витоком усіх понять, на яких будується виклад, є поняття нумерації як функціонального відображення множини натуральних чисел на задану множину (не обов'язково числової природи). Зокрема, числові послідовності з відомим загальним членом є нумерацією множини значень їхніх елементів. Із часів Г. Кантора не було наукових робіт, у яких би розглядався систематичний конструктивний підхід до нумерації елементів дискретних множин. Метод дослідження ґрунтується на алгебрі логіки Буля – булевій алгебрі, пропозиційними змінними (висловленнями) якої є послідовності, зокрема числові. Логічні операції над такими змінними, на відміну від відомих арифметичних операцій, здатні враховувати властивості самих операндів. Це, відповідно, дає можливість зберегти властивості чинників економічного процесу, для опису якого будується математична модель. Шляхи практичного застосування результатів дослідження обумовлено: проблемою управління підприємствами в разі моделювання нелінійних процесів в економіці, як і взагалі нелінійних динамічних процесів; задачами теорії алгоритмів, теорії чисел, дискретної математики, математичного програмування, оптимального розкрою матеріалів, кристалографії тощо. На прикладі теоретико-числової задачі показано ефективність застосування запропонованого алгебрологічного підходу для вирішення четвертої проблеми списку Едмунда Ландау та встановлення потужності множини простих чисел у многочлені Ейлера. Є припущення, що такий підхід застосовний до вивчення потужності простих чисел в інших формах.ru_RU
dc.language.isouk_UAru_RU
dc.publisherХНЕУ ім. С. Кузнецяru_RU
dc.subjectбулева алгебраru_RU
dc.subjectлогічні операціїru_RU
dc.subjectмногочленru_RU
dc.subjectмодельru_RU
dc.subjectпородна множинаru_RU
dc.subjectпослідовністьru_RU
dc.subjectпросте число.ru_RU
dc.titleПослідовнісна модель булевої алгебри та деякі її застосуванняru_RU
dc.typeArticleru_RU
Располагается в коллекциях:№ 1

Файлы этого ресурса:
Файл Описание РазмерФормат 
сенчуков.pdf653,41 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.