Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://repository.hneu.edu.ua/handle/123456789/35846
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorAubakirova Dinara-
dc.date.accessioned2025-04-16T11:15:20Z-
dc.date.available2025-04-16T11:15:20Z-
dc.date.issued2024-
dc.identifier.citationAubakirova Dinara. Directions for using big data analytics in logistics management / Dinara Aubakirova // Управління розвитком. – 2024. – Т. 23, № 1. – С. 27-36.uk_UA
dc.identifier.urihttp://repository.hneu.edu.ua/handle/123456789/35846-
dc.description.abstractLogistics operations are becoming increasingly complex and require accurate data for effective management. The use of big data in logistics management is a relevant issue due to the growing volume of data and the need to optimize delivery and inventory management processes to meet market demands. The purpose of the study was to develop ways to optimize the management of big data analysis in logistics. To achieve this goal, the methods of analysis, experimentation, and comparison were used. As a result of the study, strategies for optimizing logistics management of big data analysis were developed and successfully applied. The Python programming language based programme effectively optimizes delivery routes using a clustering algorithm and visualizes the results of this process. Additionally, an informative diagram has been drawn up to illustrate the key stages of the developed strategies. The study also developed and presented a table describing the use of big data analysis methods in various logistics companies. The companies were compared in terms of functionality, data, results, and field of activity. It is established that the use of machine learning methods and optimization of data storage and processing significantly increases the efficiency of logistics operations. The results of this study can be used by logistics companies of any size, as well as enterprises engaged in supply chain management. In addition, the recommendations and strategies developed in this study may be useful for information technology and data analytics professionals involved in the development of software solutions and systems to optimize logistics processes.uk_UA
dc.language.isoenuk_UA
dc.publisherХНЕУ ім. С. Кузнецяuk_UA
dc.subjectsupply controluk_UA
dc.subjectuse of volumetric informationuk_UA
dc.subjectways to optimize managementuk_UA
dc.subjecttransport and warehouse organizationuk_UA
dc.subjectbig data analysisuk_UA
dc.titleDirections for using big data analytics in logistics managementuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:№ 1

Файли цього матеріалу:
Файл Опис РозмірФормат 
аубакірова.pdf605,16 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.