Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://repository.hneu.edu.ua/handle/123456789/37318
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorKorablyov M.-
dc.contributor.authorFomichov O.-
dc.contributor.authorKobzev I.-
dc.contributor.authorAntonov D.-
dc.contributor.authorTkachuk O.-
dc.date.accessioned2025-09-24T14:45:26Z-
dc.date.available2025-09-24T14:45:26Z-
dc.date.issued2025-
dc.identifier.citationKorablyov M. Stock market price forecasting using evolving graph neural network / M. Korablyov, O. Fomichov, I. Kobzev and other // Innovative technology, Proceedings of the International Workshop on Computational Intelligence (IWSCI 2025) co-located with the IV International Scientific Symposium “Intelligent Solutions” (IntSol 2025), May 01–05, 2025. - Kyiv–Uzhhorod, Ukraine, 2025. - Р. 69-80.uk_UA
dc.identifier.urihttps://repository.hneu.edu.ua/handle/123456789/37318-
dc.description.abstractPredicting stock prices is essential to inform investment decisions in the financial market. Analyzing financial market movements and stock price behavior is extremely complex due to the dynamic, nonlinear, non-stationary, non-parametric, and chaotic markets. Various approaches are used to analyze stocks for financial market forecasting purposes. Traditional methods based on time series information for one company's stocks do not consider the relationships between stocks of other companies, which can improve the efficiency of stock price forecasting. The use of graph neural networks for these purposes, in which the relationships of time series are represented as a relationship graph structure, and the variables are defined as graph nodes, significantly improves forecasting accuracy. Existing forecasting methods usually assume that the structure of the relationships graph, which is described by the relationships matrix and determines the aggregation method of the graph neural network, is fixed by definition. Therefore, they cannot effectively consider dynamic changes in relationship graphs. In this paper, an evolving graph neural network is proposed for forecasting stock prices in the stock market. To extract dynamic correlations between price movements in financial time series, a relationships graph is constructed in the form of clusters, the generation and the evolution of the structure and parameters of which are implemented using a dendritic artificial immune network (DaiNet). For each generated cluster of the relationships graph, the price encoding is performed using transformers to determine the price information. Then, the messages from the relational graph structure and the input time sequences are aggregated based on the use of the attention layer of the time graph. At the last GNN layer, the final prediction of the future price movement of each stock is performed using a multilayer perceptron to integrate the components.uk_UA
dc.language.isoenuk_UA
dc.subjectfinancial marketuk_UA
dc.subjectforecastinguk_UA
dc.subjectprofituk_UA
dc.subjectinteractionuk_UA
dc.subjectrelationships graphuk_UA
dc.subjectevolutionuk_UA
dc.subjectgraph neural networkuk_UA
dc.subjectartificial immune networkuk_UA
dc.titleStock market price forecasting using evolving graph neural networkuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті (МСТ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
STOCK MARKET PRICE FORECASTING USING EVOLVING GRAPH NEURAL NETWORK.pdf2,22 MBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.