Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://repository.hneu.edu.ua/handle/123456789/37384
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorFrolov A.-
dc.contributor.authorBoiko R.-
dc.contributor.authorRudevska V.-
dc.contributor.authorButenko D.-
dc.contributor.authorMoisiiakha A.-
dc.date.accessioned2025-10-13T21:23:59Z-
dc.date.available2025-10-13T21:23:59Z-
dc.date.issued2025-
dc.identifier.citationFrolov A. Evaluating Modern quantitative methods for investment portfolio management under market uncertainty / A. Frolov, R. Boiko, V. Rudevska and other // Journal of Applied Economic Sciences. – 2025. – Volume XX. - Fall, 3(89). – Р. 427 – 448.uk_UA
dc.identifier.urihttps://repository.hneu.edu.ua/handle/123456789/37384-
dc.description.abstractThis study evaluates the effectiveness of advanced quantitative techniques, Monte Carlo simulations, AI-driven models, and Genetic Algorithms in enhancing investment portfolio management beyond Traditional Modern Portfolio Theory limitations. Analysing financial data from 2014-2024, this study assessed performance using Sharpe Ratio, Value-at-Risk, and Conditional Value-at-Risk across various market scenarios including black swan events. Findings demonstrate that Genetic Algorithms achieved the highest risk-adjusted returns while minimizing volatility, AI-driven models provided superior adaptability to market fluctuations, and Monte Carlo simulations significantly improved risk assessment compared to traditional approaches. The integration of green bonds into AI-optimised portfolios successfully balanced financial performance with sustainability objectives, appealing to environmentally conscious investors. This research confirms that AI and Genetic Algorithm approaches consistently outperform traditional models in optimising risk-adjusted returns under volatile conditions. Portfolio managers should consider implementing hybrid quantitative approaches that combine AI-based decision-making with Monte Carlo stress testing to enhance investment resilience and strategic planning in dynamic financial environments.uk_UA
dc.language.isoenuk_UA
dc.subjectportfolio optimizationuk_UA
dc.subjectrisk managementuk_UA
dc.subjectfinancial analyticsuk_UA
dc.subjectmarket volatilityuk_UA
dc.subjectquantitative modellinguk_UA
dc.subjectgreen bondsuk_UA
dc.titleEvaluating Modern quantitative methods for investment portfolio management under market uncertaintyuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті (ПТТБ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Evaluating Modern Quantitative Methods for Investment Portfolio Management_стаття скопус.......pdf106,37 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.