Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
https://repository.hneu.edu.ua/handle/123456789/37384
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Frolov A. | - |
dc.contributor.author | Boiko R. | - |
dc.contributor.author | Rudevska V. | - |
dc.contributor.author | Butenko D. | - |
dc.contributor.author | Moisiiakha A. | - |
dc.date.accessioned | 2025-10-13T21:23:59Z | - |
dc.date.available | 2025-10-13T21:23:59Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Frolov A. Evaluating Modern quantitative methods for investment portfolio management under market uncertainty / A. Frolov, R. Boiko, V. Rudevska and other // Journal of Applied Economic Sciences. – 2025. – Volume XX. - Fall, 3(89). – Р. 427 – 448. | uk_UA |
dc.identifier.uri | https://repository.hneu.edu.ua/handle/123456789/37384 | - |
dc.description.abstract | This study evaluates the effectiveness of advanced quantitative techniques, Monte Carlo simulations, AI-driven models, and Genetic Algorithms in enhancing investment portfolio management beyond Traditional Modern Portfolio Theory limitations. Analysing financial data from 2014-2024, this study assessed performance using Sharpe Ratio, Value-at-Risk, and Conditional Value-at-Risk across various market scenarios including black swan events. Findings demonstrate that Genetic Algorithms achieved the highest risk-adjusted returns while minimizing volatility, AI-driven models provided superior adaptability to market fluctuations, and Monte Carlo simulations significantly improved risk assessment compared to traditional approaches. The integration of green bonds into AI-optimised portfolios successfully balanced financial performance with sustainability objectives, appealing to environmentally conscious investors. This research confirms that AI and Genetic Algorithm approaches consistently outperform traditional models in optimising risk-adjusted returns under volatile conditions. Portfolio managers should consider implementing hybrid quantitative approaches that combine AI-based decision-making with Monte Carlo stress testing to enhance investment resilience and strategic planning in dynamic financial environments. | uk_UA |
dc.language.iso | en | uk_UA |
dc.subject | portfolio optimization | uk_UA |
dc.subject | risk management | uk_UA |
dc.subject | financial analytics | uk_UA |
dc.subject | market volatility | uk_UA |
dc.subject | quantitative modelling | uk_UA |
dc.subject | green bonds | uk_UA |
dc.title | Evaluating Modern quantitative methods for investment portfolio management under market uncertainty | uk_UA |
dc.type | Article | uk_UA |
Розташовується у зібраннях: | Статті (ПТТБ) |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
Evaluating Modern Quantitative Methods for Investment Portfolio Management_стаття скопус.......pdf | 106,37 kB | Adobe PDF | Переглянути/відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.