Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://repository.hneu.edu.ua/handle/123456789/38372
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorPeredrii O.-
dc.date.accessioned2025-12-23T23:41:56Z-
dc.date.available2025-12-23T23:41:56Z-
dc.date.issued2025-
dc.identifier.citationPeredrii O. SHALLOW ANN MODELS TO CLASSIFY UKRAINIAN AI-GENERATED TEXT / O. Peredrii // Control, Navigation and Communication Systems. – 2025. - No. 4(82). - P. 108–113.uk_UA
dc.identifier.urihttps://repository.hneu.edu.ua/handle/123456789/38372-
dc.description.abstractIn this study, we address the task of detecting AI-generated fragments within Ukrainian-language texts. The objective is to develop a tool capable of identifying content produced with the assistance of artificial intelligence, particularly in PDF documents related to the IT domain. The research explores and analyzes existing solutions and approaches currently available in this area. Several commercial AI-content detectors were evaluated using our custom datasets. The dataset was constructed by segmenting bachelor's theses from IT-related fields into fragments of approximately 1,000 characters each. Five artificial neural network models were tested using the custom dataset combined with a traditional NLP pipeline, achieving an accuracy of 87–88%. Given the complexity of the problem and the ethical considerations within the educational context, the classification results should be further validated by human experts. The current implementation can serve as a foundation for future improvements.uk_UA
dc.language.isoenuk_UA
dc.subjectartificial neural networks (ANN)uk_UA
dc.subjectshallow ANN modelsuk_UA
dc.subjectAI-generated content (AIGC)uk_UA
dc.subjectLLMuk_UA
dc.subjectAI detectoruk_UA
dc.titleSHALLOW ANN MODELS TO CLASSIFY UKRAINIAN AI-GENERATED TEXTuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті (ІКТ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Peredrii Olena.pdf369,2 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.