Please use this identifier to cite or link to this item: https://repository.hneu.edu.ua/handle/123456789/38105
Title: Modelling and analysis of user behaviour
Authors: Brynza N. O.
Koliesnik D.
Keywords: user behavior modelling
user activity analysis
cluster analysis
Ward’s method
euclidean distance
discriminant analysis
online shopping
data mining
user experience personalization
behavioral indicators
Issue Date: 2025
Citation: Brynza N. O. Modelling and analysis of user behaviour / N. O. Brynza, D. Koliesnik // Інформаційно-комунікаційні технології та кібербезпека (IКTK-2025) : матеріали Міжнародної науково-технічної конференції, 4 – 5 грудня 2025 р. - Харків, ХНУРЕ, 2025. - С. 209-212.
Abstract: This paper provides a thorough study of modeling and analyzing user behavior in online shopping. The research is based on simulated interactions involving 40 users with an e-commerce platform while selecting different gaming monitors. Key behavioral indicators such as interaction time, specification views, and filter usage were standardized to allow for accurate clustering. Using hierarchical cluster analysis with Ward’s method and Euclidean distance, three distinct user groups were identified, each demonstrating unique behavioral patterns toward BenQ, Asus, and Xiaomi products. Discriminant analysis was utilized to evaluate the classification's effectiveness and to identify the most significant variables affecting group differentiation. The findings showed an accuracy, confirming the reliability of the clustering method. This research emphasizes the significance of analyzing behavioral data to tailor user experiences, improve marketing tactics, and boost digital product usability. The findings offer important insights into how data-driven decision-making can enhance adaptive e-commerce solutions.
URI: https://repository.hneu.edu.ua/handle/123456789/38105
Appears in Collections:Статті (ЕКСА)

Files in This Item:
File Description SizeFormat 
48-Brynza_-Kolesn_IKTK-2025-Sektsiia-2.pdf986,88 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.