Please use this identifier to cite or link to this item:
https://repository.hneu.edu.ua/handle/123456789/37814| Title: | Synergistic differential privacy-enhanced federated learning framework for heterogeneous iot environments |
| Authors: | Yinqiang Zhu Skorin Y. |
| Keywords: | analysis development market method modeling system business |
| Issue Date: | 2025 |
| Citation: | Yinqiang Zhu A Synergistic differential privacy-enhanced federated learning framework for heterogeneous iot environments / Yinqiang Zhu, Y. Skorin // Нові горизонти розвитку бізнесу в умовах сучасних викликів. Євроінтеграційні механізми безпечного функціонування і розвитку агроекосистем : матеріали Міжнародної науково-практичної конференції здобувачів вищої освіти і молодих вчених, 7 листопада 2025 р. – Харків, 2025. – С. 435–436. |
| Abstract: | Collaboratively training machine learning models on resource-constrained edge devices, while ensuring user data privacy, has become a key and challenging research challenge. Federated learning (FL) provides a basic framework for this purpose, however, its practical application still faces complex, interconnected challenges due to the introduction of differ-ential privacy (DP) noise, imperfectly distributed data (Non-IID), and com-munication bottlenecks. Most existing research focuses on solving one of these problems in isolation, often ignoring the complex trade-offs between them. |
| URI: | https://repository.hneu.edu.ua/handle/123456789/37814 |
| Appears in Collections: | Статті студентів (ІС) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Секція 7_c.435_Yingiang Zhu.pdf | 49,85 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.