Please use this identifier to cite or link to this item:
https://repository.hneu.edu.ua/handle/123456789/37913| Title: | Innovative approaches to risk management in startup financing |
| Authors: | Butenko О. Levkovețs О. |
| Keywords: | startups investment risk machine learning ensemble models deep learning Explainable AI statistical methods forecasting digital analytics financial resilience |
| Issue Date: | 2025 |
| Citation: | Butenko О. Innovative approaches to risk management in startup financing / О. Butenko, О. Levkovețs // Фінансове управління та інформаційно-аналітичне забезпечення бізнесу в умовах воєнної економіки та повоєнного відновлення: інновації, ризики та можливості : матеріали ХІV Міжнар. наук.-практ. конференції, 13-14 листопада 2025 р. - Харків, 2025. - С. 7–9. |
| Abstract: | The study examines contemporary approaches to forecasting investment risks in startups operating under conditions of economic turbulence and limited access to capital. Classical statistical methods remain essential for establishing baseline risk assessments, yet their predictive accuracy declines as market dynamics and technological shifts intensify. Particular attention is given to ensemble machine-learning algorithms and deep-learning architectures capable of capturing nonlinear relationships, temporal patterns, and network interdependencies within the startup ecosystem. The analysis highlights the importance of integrating Explainable AI methods, monitoring data-drift phenomena, and employing scenario analysis to ensure transparency and robustness of risk-forecasting models. The findings demonstrate the potential of digital analytical tools to enhance risk assessment quality and support adaptive financial strategies for startups, with specific relevance to the Ukrainian context. |
| URI: | https://repository.hneu.edu.ua/handle/123456789/37913 |
| Appears in Collections: | Статті (МЕМ) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| КОНФЕРЕНЦІЯ Бутенко_Левковець.pdf | 273,59 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.