Please use this identifier to cite or link to this item: https://repository.hneu.edu.ua/handle/123456789/38725
Title: Analytical tools and information processing technologies for business efficiency assessment
Authors: Prokofieva, K.
Keywords: business analytics
Business Intelligence (BI)
decision support
optimisation
digital transformation
data-driven management
Issue Date: 2025
Citation: Prokofieva, K. Analytical tools and information processing technologies for business efficiency assessment / Prokofieva, K. // Сучасний стан та тенденції розвитку професійної системи менеджменту: виклики для України і світу : матеріали Міжнародної науково-практичної конференції (м. Одеса, 14 листопада 2025 р.) / за заг. ред. Е. А. Кузнєцова. – Львів – Торунь : Liha-Pres, 2025. – P. 241-243.
Abstract: In the contemporary business environment, analytics is increasingly essential for improving managerial efficiency, optimising resources, and supporting sustainable enterprise development amid rapid digitalisation and growing data volumes. This paper systematises analytical tools by functional purpose (typical, diagnostic, predictive, and evaluative) and by the degree of automation, contrasting manual approaches (e.g., spreadsheets) with automated Business Intelligence (BI) systems. It also outlines four levels of analytics—descriptive, diagnostic, predictive, and prescriptive—as a decision support logic that moves from recording facts to explaining causes, forecasting outcomes, and formulating recommendations. The study summarises key approaches to analytical data processing, including statistical methods (correlation, regression, factor and cluster analysis), economic-mathematical methods (optimisation, modelling, game theory, sensitivity analysis), and financial analysis (ratio analysis, DuPont model, trend and cash-flow analysis). Particular attention is given to BI platforms as integrative technologies that consolidate data from internal and external sources, automate aggregation, generate interactive dashboards, and enable real-time monitoring and predictive analytics. Overall, the paper argues that the combined use of analytical tools and BI technologies strengthens evidence-based management, increases organisational flexibility and competitiveness, and supports the transition toward a data-driven management model.
URI: https://repository.hneu.edu.ua/handle/123456789/38725
Appears in Collections:Статті (МБА)

Files in This Item:
File Description SizeFormat 
Thesis_Prokofieva.pdf74,86 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.