Please use this identifier to cite or link to this item: https://repository.hneu.edu.ua/handle/123456789/37814
Title: Synergistic differential privacy-enhanced federated learning framework for heterogeneous iot environments
Authors: Yinqiang Zhu
Skorin Y.
Keywords: analysis
development
market
method
modeling
system
business
Issue Date: 2025
Citation: Yinqiang Zhu A Synergistic differential privacy-enhanced federated learning framework for heterogeneous iot environments / Yinqiang Zhu, Y. Skorin // Нові горизонти розвитку бізнесу в умовах сучасних викликів. Євроінтеграційні механізми безпечного функціонування і розвитку агроекосистем : матеріали Міжнародної науково-практичної конференції здобувачів вищої освіти і молодих вчених, 7 листопада 2025 р. – Харків, 2025. – С. 435–436.
Abstract: Collaboratively training machine learning models on resource-constrained edge devices, while ensuring user data privacy, has become a key and challenging research challenge. Federated learning (FL) provides a basic framework for this purpose, however, its practical application still faces complex, interconnected challenges due to the introduction of differ-ential privacy (DP) noise, imperfectly distributed data (Non-IID), and com-munication bottlenecks. Most existing research focuses on solving one of these problems in isolation, often ignoring the complex trade-offs between them.
URI: https://repository.hneu.edu.ua/handle/123456789/37814
Appears in Collections:Статті студентів (ІС)

Files in This Item:
File Description SizeFormat 
Секція 7_c.435_Yingiang Zhu.pdf49,85 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.